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WHAT WAS STUDIED AT THE LAST 
LECTURE?
Introduction

▪ History

Advantages of Integrated Optics

▪ Comparison of Optical Fibers with Other Interconnectors

▪ Comparison of Optical Integrated Circuits with Electrical Integrated Circuits

Substrate Materials for Optical Integrated Circuits

▪ Hybrid Versus Monolithic Approach

▪ III–V and II–VI Ternary Systems

▪ Hybrid OIC’s in Lithium niobate (LiNbO3)
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THIS LECTURE WILL COVER:
Introduction

Modes
▪ Modes in a planar waveguide

Boundary conditions

Transcendental equation

Cut off condition
▪ Symmetric waveguide

▪ Asymmetric waveguide

Experimental observation of waveguide modes

Numerical modeling

Ray optics approach

Goos-Hanchen shifts
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EVANESCENT EXCITATION VS. NORMAL 
INCIDENCE
Variation of refractive indices:

Longitudinal

1. Refractive indices vary along the light propagation direction

2. Approach: transfer matrix method

3. Devices: Distributed Bragg Gratings, Anti-Reflective Coatings.

Transverse

1. The index distribution is not a function of the light propagation direction

2. Approach: guided wave optics

3. Devices: fibers, planar waveguides.
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A WAVEGUIDE
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A WAVEGUIDE

The optical waveguide is the fundamental element that interconnects the various 

devices of an optical integrated circuit, just as a metallic strip does in an electrical 

integrated circuit. However, unlike electrical current that flows through a metal strip 

according to Ohm’s law, optical waves travel in the waveguide in distinct optical 

modes. A mode, in this sense, is a spatial distribution of optical energy in one or 

more dimensions that remains constant in time.
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HOW DOES LIGHT PROPAGATE IN A 
WAVEGUIDE?
▪ A propagation mode of an ideal loss-less waveguide at a given λ preserves the 

cross-sectional shape in which the wave propagates.

▪ Waveguide mode profiles are wavelength dependent.

▪ Waveguide modes at any given λ are determined by the cross-sectional geometry.

▪ Waveguide modes at any given λ are determined by the refractive index profile of 
the waveguide.
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CONCEPT OF TOTAL INTERNAL REFLECTION

Figure 1: A laser beam through acrylic shows the concept of total internal reflection 
(the light doesn’t continue straight through the edge of the glass but bounces back 
and forth until exiting at the end).
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SURVEY: EVANESCENT WAVES

▪ EasyPolls:
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SNELL’S LAW OF REFRACTION

▪ When light hits the boundary between two materials, the light is reflected and 
refracted. In the transition from one medium to another medium, the propagation 
angle changes. 

▪ In 1621, Snell discovered empirically the relationship between the indices of the 
materials and the propagation angles of the light.

▪ The refraction angle can be calculated by Snell’s law of refraction which is defined 
as

sin 𝜃1

sin 𝜃2
=

𝑣1

𝑣2
=

𝑛2

𝑛1

where 1 is the incident medium, 2 is the transmitted medium, 𝑣 is the velocity,

𝜃 is the angle of the light in the medium and 𝑛 is the refractive index.
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REFLECTION AND REFRACTION

Assumptions:

▪ Plane wave propagation.

▪ Linear medium.

▪ Isotropic medium.

▪ Smooth planar optical interface.

Figure 2: Plane wave reflection and 

refraction at an optical interface.
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FRESNEL'S 
EQUATIONS

▪ As light hits the boundary of two 
materials, the power is split and a 
fraction of the power is refracted while 
the rest is reflected. 

▪ In 1825, Fresnel derived a set of 
equations that defines the relation 
between the reflectance or the 
transmittance to the incident angle and 
the indices of the material. 
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FRESNEL’S FIELD REFLECTIVITY

The reflectivity for optical field components parallel to the incident plane as:

𝜌∥ =
𝐸𝑟

∥

𝐸𝑖
∥

=
𝑛1 cos θ2 − 𝑛2 cos θ1

𝑛1 cos θ2 + 𝑛2 cos θ1
 

In order to eliminate 𝜃2, we can use Snell’s Law:

𝜌∥ =

𝑛1 1 −
𝑛1
𝑛2

sin 𝜃1

2

− 𝑛2 cos θ1

𝑛1 1 −
𝑛1
𝑛2

sin 𝜃1

2

+ 𝑛2 cos θ1

Similar analysis can also find the reflectivity for optical field components 
perpendicular to the incident plane as:

2

1
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FIELD REFLECTIVITY

Similar analysis can also find the reflectivity for optical field components 

perpendicular to the incident plane as:

𝜌⊥ =
𝐸𝑟

⊥

𝐸𝑖
⊥

=
𝑛1 cos θ1 − 𝑛2 cos θ2

𝑛1 cos θ1 + 𝑛2 cos θ2

𝜌⊥ =

𝑛1 cos θ1 − 𝑛2 1 −
𝑛1
𝑛2

sin θ1

2

𝑛1 cos θ1 + 𝑛2 1 −
𝑛1
𝑛2

sin θ1

2

3

4
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FIELD REFLECTIVITY

Power reflectivities for parallel and perpendicular field components are therefore:

𝑅∥ = 𝜌∥
2

=
𝐸𝑟

∥

𝐸𝑖
∥

2

and

𝑅⊥ = 𝜌⊥
2 =

𝐸𝑟
⊥

𝐸𝑖
⊥

2

6

5
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FRESNEL'S POWER TRANSMISSION 
COEFFICIENTS
According to energy conservation, the power transmission coefficients can be found 

as:

𝑇∥ =
𝐸𝑡

∥

𝐸𝑖
∥

2

= 1 − 𝜌∥
2

and

𝑇⊥ =
𝐸𝑡

⊥

𝐸𝑖
⊥

2

= 1 − 𝜌⊥
2

In practice, for an arbitrary incidence polarization state, the input field can always be 

decomposed into 𝐸∥ and 𝐸⊥ components. Each can be treated independently.

7

8
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FRESNEL'S SPECIAL CASE: NORMAL 
INCIDENCE
Normal incidence is when a light is launched perpendicular to the material 

interface. In this case, 𝜃1 = 𝜃2 = 0 and cos 𝜃1 = cos 𝜃2 = 1. The field reflectivity can 

be simplified as:

𝜌∥ = 𝜌⊥ =
𝑛1 − 𝑛2

𝑛1 + 𝑛2

▪ If 𝑛1 > 𝑛2 there is no phase shift between incident and reflected field (the phase of 

both 𝜌∥ and 𝜌⊥ is zero).

▪ If 𝑛1 < 𝑛2 there is a 𝜋 phase shift for both 𝜌∥ and 𝜌⊥ because they both become 

negative.

With normal incidence, the power reflectivity is:

𝑅∥ = 𝑅⊥ =
𝑛1 − 𝑛2

𝑛1 + 𝑛2

2

9

10
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CRITICAL ANGLE - 𝜃𝑐
▪ However, when light hits the boundary between high to low refractive index 

material, above a specific angle, called the critical angle, the light will be fully 

reflected. 

▪ This phenomenon is called total internal reflection (TIR). According to Fresnel 

equations (2) and (4), total reflection ( 𝜌∥ = 𝜌⊥ = 1) occurs when
𝑛1

𝑛2
sin 𝜃1 = 1 

and the critical angle is defined as:

𝜃𝑐 = 𝜃1 = 𝑠𝑖𝑛−1
𝑛2

𝑛1

(11)
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CRITICAL ANGLE

▪ Obviously, the necessary condition to have a critical angle depends on the 

interface condition. 

▪ if 𝒏𝟏 < 𝒏𝟐: there is no real solution for 𝜃𝑐 = sin−1 𝑛2/𝑛1 .

▪ It means that when a light beam goes from a low index material to a high index 

material, total reflection is not possible.

▪ if 𝒏𝟏 > 𝒏𝟐: there is a real solution for 𝜃𝑐 = sin−1 𝑛2/𝑛1 . 

▪ Therefore, total reflection can only happen when a light beam launches from a high 

index material to a low index material. 
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CRITICAL ANGLE

▪ It is important to note that at a larger incidence angle 𝜃1 > 𝜃𝑐, 1 −
𝑛1

𝑛2
sin 𝜃1

2
< 0 

and 1 −
𝑛1

𝑛2
sin 𝜃1

2
 becomes imaginary. 

▪ Equations (2) and (4) show that if 1 −
𝑛1

𝑛2
sin 𝜃1

2
 is imaginary, both 𝜌∥

2
 and 𝜌⊥

2 

are equal to 1. The important conclusion is that for all incidence angles satisfying 

𝜃1 = 𝜃𝑐 total internal reflection will happen with 𝑅 = 1.
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CRITICAL ANGLE

Figure 3: Reflection at a planar interface between unbounded regions of refractive 
indices 𝑛co and 𝑛cl showing (a) total internal reflection and (b) partial reflection and 
refraction.

Alina Karabchevsky, Integrated Photonics 21



EVANESCENT WAVE

▪ An evanescent wave is a side effect of TIR and appears beyond the boundary 
surface. Specifically, even though the entire incident wave is reflected back into the 
originating medium (TIR), there is some penetration into the medium with a lower n 
at the boundary. The evanescent wave is leading to the Goos-Hanchen shift.

Figure 4: Total internal reflection and Goos-Hänchen shift. 𝑅 is the behavior of the 
partially reflected beam, 𝑇 is the behavior of the total internal reflection beam and 𝑑 
is the Goos-Hänchen shift.

𝑛2 > 𝑛1

𝑛2 > 𝑛3 > 𝑛1

Alina Karabchevsky, Integrated Photonics 22



EVANESCENT WAVE

▪ The transmitted wavevector is: 𝑘𝑡 = 𝑘𝑡 sin θ𝑡 ො𝑥 + 𝑘𝑡 cos θ𝑡 Ƹ𝑧 

▪ If 𝑛1 > 𝑛2, then sin 𝜃𝑡 > 1.

▪ Since sin 𝜃𝑡 =
𝑛1

𝑛2
sin 𝜃𝑖 (Snell’s law),

𝑛1

𝑛2
sin 𝜃𝑖 > 1 for 𝜃𝑖 > 𝜃𝑐 therefore cos 𝜃𝑡 becomes 

complex:

cos θ𝑡 = 1 − sin2 𝜃𝑡 = 𝑗 sin2 𝜃𝑡 − 1 12
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EVANESCENT WAVE

The electric field of the transmitted plane wave is given by 𝐸𝑡 = 𝐸0𝑒𝑗 𝑘𝑡⋅ ҧ𝑟−ω𝑡

𝐸𝑡 = 𝐸0𝑒𝑗 𝑘𝑡⋅ ҧ𝑟−ω𝑡 = 𝐸0𝑒𝑗 𝑘𝑡 sin θ𝑡 𝑥+𝑘𝑡 cos θ𝑡 𝑧−ω𝑡

𝐸𝑡 = 𝐸0𝑒
𝑗 𝑥𝑘𝑡 sin θ𝑡 +𝑧𝑗𝑘𝑡 sin2 θ𝑡 −1−ω𝑡

By substituting 𝑘𝑡 =
𝜔𝑛2

𝑐
 we obtain:

𝐸𝑡 = 𝐸0𝑒−κ𝑧𝑒𝑗 𝑘𝑥−ω𝑡

where 𝑘 =
𝜔𝑛1

𝑐
 and κ =

ω

𝑐
𝑛1

2 sin2 𝜃𝑖 − 𝑛2
2

13

14

15
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EVANESCENT FIELD - 𝑬𝒕

= 𝑬𝟎𝒆−𝛋ො𝒛𝒆𝐣 𝐤ෝ𝒙−𝝎𝒕

1) Appears in the optically less dense medium.

2) Characterized by its propagation in the 𝑥 direction.

3) Characterized by its exponential attenuation in the 

𝑧 direction.

4) No energy flows across the boundary.

5) The component of Poynting vector in the direction 

normal to the boundary is finite, but its time 

average vanishes (what is Poynting vector? what is 

time average Poynting vector?).

6) The Goos-Hanchen effect only occurs for linearly 

polarized light.

7) If the light is circularly or elliptically polarized, it 

will undergo the analogous Imbert–Fedorov effect.
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BACKGROUND

▪ The optical wave propagates in the waveguide as a mode.

▪ Mode is the spatial distribution of optical energy propagating inside the 

waveguide and constant in time. 

▪ Each mode has a different reflection angle. As the order of the mode increases, the 

reflection angle and the propagation constant
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AMP’ERE’S CIRCUITAL LAW

▪ These days, light is defined as an electromagnetic phenomenon, however, until 

1821, electrostatics and magnetostatics were considered separate phenomena.

▪ In 1821, Danish physicist Hans-Christian Ørsted showed experimentally that 

flowing electric current creates a magnetic field around it that was observed as a 

shift in the needle of a compass that was next to the wire. 

▪ This discovery led to the development of ‘Amp’ere’s circuital law’ which describes 

the relation between the magnetic flux density 𝐵 and the flowing electric current 𝐼.
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MAXWELL’S EQUATIONS

Maxwell's equations, or Maxwell–Heaviside 
equations, are a set of coupled partial differential 
equations that, together with the Lorentz force law, 
form the foundation of classical electromagnetism, 
classical optics, and electric circuits. The equations 
provide a mathematical model for electric, optical, and 
radio technologies, such as power generation, electric 
motors, wireless communication, lenses, radar etc. 
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MAXWELL’S EQUATIONS

▪ The link between electricity and magnetism was completed by the work of James 

Clerk Maxwell. 

▪ He took the four equations made by Gauss (also Coulomb), Faraday, and Amp’ere 

and by making some corrections he developed mathematically the connection 

between those equations.

▪ In 1861, Maxwell presented a set of coupled equations (around 20 equations) that 

describe electromagnetic phenomena varying in time which are called Maxwell’s 

equations. 

▪ The four equations known today were obtained by Oliver Heaviside, using vector 

notation to simplify 12 of the 20 equations into the 4 known Maxwell’s equations.
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∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ Ԧ𝐽

∇ ∙ 𝐷 = 𝜌ext

∇ ∙ 𝐵 = 0



MAXWELL’S EQUATIONS

▪ These equations can be used as a mathematical model for phenomena in nature 

and for electrical and optical problems. 

▪ In a paper published in 1865, Maxwell has derived a wave equation from his 

equations thus discovering electromagnetic waves. 

▪ He suggested that light is an electromagnetic wave and showed this hypothesis to 

be consistent with experimental results. Therefore, he concluded that light is an 

electromagnetic wave.

▪ In 1886-1889, German physicist Heinrich Rudolf Hertz performed a series of 

experiments that proved that light is an electromagnetic wave as was analytically 

calculated by Maxwell.
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∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ Ԧ𝐽

∇ ∙ 𝐷 = 𝜌ext

∇ ∙ 𝐵 = 0



MAXWELL’S EQUATIONS

Assumptions:

1. The parameters of the medium in a linear system 

don’t dependent on the electric field 𝐸  and the 

magnetic field 𝐻:   휀 = 휀𝑟휀0 𝜇 = 𝜇0.

2. The medium parameters 𝜇 and 휀 are constant and 

time independent.

3. The medium is isotropic ⇒ 𝜇 and 휀 are direction 

independent.

4. The medium is dielectric ⇒ 𝐽 = 0 and 𝜌ext = 0
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MAXWELL’S EQUATIONS

▪ Assuming linear, homogeneous and isotropic medium, Maxwell’s equations are 

defined as

where 𝐸 is the electric field vector, 𝐷 is the electric displacement field vector, 𝐻 is 

the magnetic field vector and 𝐵 is the magnetic flux density vector. 𝜌ext and 𝐽 are the 

charge and current densities, respectively.

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ Ԧ𝐽

∇ ∙ 𝐷 = 𝜌ext

∇ ∙ 𝐵 = 0

Faraday’s law

Gauss law

Gauss's law for magnetism

Ampere-Maxwell law 17

19

18

16
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MAXWELL’S EQUATIONS

▪ The current density is defined as 𝐽 = 𝜎𝐸, where 𝜎 is the electric conductivity, and 

only exists in ohmic material, such as metals and semiconductors.

▪ In dielectric medium, 𝐽 = 0 and 𝜌ext = 0.

▪ 𝐷 and 𝐵 are related to the field vectors and are defined as

𝐷 = 휀0𝐸 + 𝑃

𝐵 = 𝜇0𝐻 + 𝑀

where 휀0 and 𝜇0 are the electric permittivity and magnetic permeability of vacuum, 

respectively, 𝑃 is the polarization and 𝑀 is the magnetization.
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POLARIZATION AND MAGNETIZATION

In the case of isotropic material, the polarization and the magnetization are given by

𝑃 = 휀0𝜒𝐸 𝑀 = 𝜇0𝜒𝐻

and

𝐷 = 휀0𝐸 + 𝑃 = 휀0휀𝑟𝐸 = 휀𝐸

𝐵 = 𝜇0𝐻 + 𝑀 = 𝜇0𝜇𝑟𝐻 = 𝜇𝐻

where 𝜇 is the permeability, 휀 is the permittivity, 𝑐 is the speed of light in vacuum, 𝜒 is 

the electric susceptibility and 휀𝑟 is called the relative permittivity and 𝜇𝑟 the relative 

permeability, which in case of non-magnetic material is 𝜇𝑟 = 1.

20

21
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MAXWELL’S EQUATIONS

▪ Maxwell’s equations for dielectric waveguide are given as

where

𝐵 = 𝜇𝐻 𝐷 = 휀𝐸

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡

∇ ∙ 𝐷 = 0

∇ ∙ 𝐵 = 0

17

19

18

16
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MAXWELL’S EQUATIONS
Reminder:

The divergence of a vector function:

∇ ⋅ Ԧ𝑓 =
𝜕𝑓𝑥

𝜕𝑥
+

𝜕𝑓𝑦

𝜕𝑦
+

𝜕𝑓𝑧

𝜕𝑧

The Laplacian of a vector function:

∇2 ⋅ Ԧ𝑓 =
𝜕2𝑓𝑥

𝜕𝑥2 +
𝜕2𝑓𝑥

𝜕𝑦2 +
𝜕2𝑓𝑥

𝜕𝑧2 ,
𝜕2𝑓𝑦

𝜕𝑥2 +
𝜕2𝑓𝑦

𝜕𝑦2 +
𝜕2𝑓𝑦

𝜕𝑧2 ,
𝜕2𝑓𝑧

𝜕𝑥2 +
𝜕2𝑓𝑧

𝜕𝑦2 +
𝜕2𝑓𝑧

𝜕𝑧2

The rotor/curl of a vector function:

∇ × Ԧ𝑓 ≡

ො𝑥 ො𝑦 Ƹ𝑧

ൗ𝜕
𝜕𝑥 ൗ𝜕

𝜕𝑦 ൗ𝜕
𝜕𝑧

𝑓𝑥 𝑓𝑦 𝑓𝑧

≡
𝜕𝑓𝑧

𝜕𝑦
−

𝜕𝑓𝑦

𝜕𝑧
ො𝑥 −

𝜕𝑓𝑧

𝜕𝑥
−

𝜕𝑓𝑥

𝜕𝑧
ො𝑦 +

𝜕𝑓𝑦

𝜕𝑥
−

𝜕𝑓𝑥

𝜕𝑦
Ƹ𝑧

The BAC CAB law:
A × B × C = B A ⋅ C − C A ⋅ B

∇ × ∇ × Ԧ𝑓 = ∇ ∇ ⋅ Ԧ𝑓 − ∇ ⋅ ∇ Ԧ𝑓 = ∇ ∇ ⋅ Ԧ𝑓 − ∇2 Ԧ𝑓

22

23

24
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THE WAVE EQUATION

We operate with rotor/curl (24) on Eq. (16) and use Eq. (20):

∇ × ∇ × 𝐸 = −𝜇
𝜕

𝜕𝑡
∇ × 𝐻 = −

𝜇휀𝜕2𝐸

𝜕𝑡2

Using BAC CAB law:

∇ × ∇ × Ԧ𝐸 = ∇ ∇ ⋅ Ԧ𝐸 − ∇2 Ԧ𝐸

𝐷 = ε𝐸  ⇒ ∇ ⋅ 𝐷 = 0 ⇒ ∇ × ∇ × 𝐸 = −∇2𝐸

The wave equation is:

∇2𝐸 = 휀𝜇
𝜕2𝐸

𝜕𝑡2

25

26

27
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THE WAVE EQUATION

The wave equation:

∇2𝐸 = 휀𝜇
𝜕2𝐸

𝜕𝑡2

where 휀 is the permittivity and 𝜇 is the permeability.

휀 = 휀0휀𝑟  휀0 = 8.854 × 10−12 F/m 

𝜇 = 𝜇0𝜇𝑟 𝜇0 = 4𝜋 × 10−7 H/m 

𝑐 is the light speed in non-magnetic medium:     𝑐 = 1/ 휀0𝜇0.

𝑛 is the refractive index:     𝑛 = 휀𝑟

Another form of the wave equation:

∇2𝐸 𝑟, 𝑡 =
𝑛2 𝑟

𝑐2

𝜕2𝐸 𝑟, 𝑡

𝜕𝑡2

28

29
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THE WAVE EQUATION SOLUTION

The solution of the wave equation for monochromatic harmonic wave (sinusoidal 

wave) in time:

𝐸 𝑟, 𝑡 = 𝐸 𝑟 𝑒𝑗ω𝑡

where ν is the frequency,  𝑐 = 𝜆0 · 𝜈  and  𝜔 = 2𝜋𝜈.

𝑘0 is the propagation constant in air (in the course we will use 𝑘 instead of 𝑘0).

𝑘0 =
2𝜋

𝜆0
=

𝜔

𝑐

where 𝜔 is the angular frequency.

30

31
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MAXWELL’S EQUATIONS

Considering light as a transverse electromagnetic wave that oscillates 

perpendicular to the direction of light propagation (𝑧) as

෨𝐸 = 𝐸 𝑥, 𝑦 𝑒𝑗 𝜔𝑡−𝛽𝑧

෩𝐻 = 𝐻 𝑥, 𝑦 𝑒𝑗 𝜔𝑡−𝛽𝑧

where 𝜔 = 2𝜋𝑓 is the angular frequency and 𝛽 is the propagation constant.
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MAXWELL’S EQUATIONS

Substituting the wave equations in Maxwell’s Equations (16) and (17), we obtain a set 
of equations

     and

▪ These six equations define each electromagnetic field component and can be used 

to analytically calculate the mode distribution for slab waveguide. Other 

waveguide configurations, such as rib waveguide, are too complicated and the 

mode can be calculated only numerically.

𝜕𝐸𝑧

𝜕𝑦
+ 𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇0𝐻𝑥

−𝑗𝛽𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= −𝑗𝜔𝜇0𝐻𝑦

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑗𝜔𝜇0𝐻𝑧

𝜕𝐻𝑧

𝜕𝑦
+ 𝑗𝛽𝐻𝑦 = 𝑗𝜔휀0𝑛2𝐸𝑥

𝑗𝛽𝐻𝑥 −
𝜕𝐻𝑧

𝜕𝑥
= −𝑗𝜔휀0𝑛2𝐸𝑦

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔휀0𝑛2𝐸𝑧
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THEORETICAL DESCRIPTION OF THE MODES 
OF A THREE-LAYER SLAB WAVEGUIDE
▪ A slab waveguide is characterized by parallel planar boundaries with respect to 

one (𝑥) direction, but is infinite in extent in the lateral directions (𝑧 and 𝑦). 

▪ Note: since it is infinite in two dimensions, it is non-practical structure for OIC, but it 

forms the basis for the analysis of practical waveguides of rectangular cross 

section.
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ASSUMPTIONS

▪ The layers are all assumed to be infinite in extent in the 𝑦 and 𝑧 directions.

▪ The layers 1 and 3 are also assumed to be semi-infinite in the 𝑥 direction.

▪ Light waves are assumed to be propagating in the 𝑧 direction with 𝛽𝑧.
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MAXWELL’S EQUATIONS

▪ Assuming the dimensions of the slab waveguide with infinite width on the y-axis, 

the electric and magnetic fields do not vary on the y-axis and we obtain 𝜕𝐸/𝜕𝑦
= 0 and 𝜕𝐻/𝜕𝑦 = 0.

▪ Substituting each relations separately in the field equations,  we get the following 

separated solutions.

     and

𝑑2𝐸𝑦

𝑑𝑥
+ 𝑘2𝑛2 − 𝛽2 𝐸𝑦 = 0 

𝐻𝑥 = −
𝛽

𝜔𝜇0
𝐸𝑦 

𝐻𝑧 =
𝑗

𝜔𝜇0

𝑑𝐸𝑦

𝑑𝑥
 

𝐸𝑥 = 𝐸𝑧 = 𝐻𝑦 = 0 

𝑑

𝑑𝑥

1

𝑛2

𝑑𝐻𝑦

𝑑𝑥
+ 𝑘2 −

𝛽2

𝑛2 𝐻𝑦 = 0 

𝐸𝑥 =
𝛽

𝜔𝜀0𝑛2 𝐻𝑦 

𝐸𝑧 =
𝑗

𝜔𝜀0𝑛2

𝑑𝐻𝑦

𝑑𝑥
 

𝐸𝑦 = 𝐻𝑥 = 𝐻𝑧 = 0 

TE mode 
(𝐻𝑥, 0, 𝐻𝑧)
(0, 𝐸𝑦, 0)

TM mode
(0, 𝐻𝑦, 0)

(𝐸𝑥, 0, 𝐸𝑧)
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MAXWELL’S EQUATIONS

▪ Each set of equations defines the field component of two types of modes in a 

waveguide. The first set corresponds to the transverse electric (TE - S polarization) 

mode and the second set to the transverse magnetic (TM - P polarization) mode. 

▪ The ’transverse’ means that the field vector is orthogonal to the propagation 

direction, therefore, having zero longitudinal component. In optical waveguide it is 

described as ‘quasi’ because the transverse field is very small.

▪ It is worth noting that there is another type of mode called transverse electric and 

magnetic (TEM) mode where 𝐸𝑧 = 𝐻𝑧 = 0. However, dielectric waveguides don’t 

support them.
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MAXWELL’S EQUATIONS

Figure below shows the fundamental quasi-TE and quasi-TM modes for a rectangle 

buried waveguide with dimensions of 1×1.5 μm.

Figure 5: (a) Illustration of a buried waveguide. The field distribution of (b) 

transverse electric (TE) fundamental mode and (c) transverse magnetic (TM) 

fundamental mode of buried waveguide with dimensions of 1×1.5 μm.
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MAXWELL’S EQUATIONS

It shows that for each mode type, quasi-TE mode or quasi-TM mode, the electric field 

distribution of the mode is different. The difference in the field distribution between 

each mode can be utilized for different applications. 

▪ Due to the evanescent field in the x-axis, TM mode can be used for applications 

that involve overlayer interaction such as plasmons. 

▪ In TE mode the evanescent tail in the y-axis and can be used for side interaction-

based applications.
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OPTICAL WAVEGUIDE MODES 2
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OPTICAL MODES

Mathematical definition of a mode is that it is an electromagnetic field which is a 

solution of Maxwell’s wave equation:

∇2𝐸 𝑟, 𝑡 = 𝑛2/𝑐2 𝜕2𝐸 𝑟, 𝑡 /𝜕𝑡2

where 𝐸 is the electric field vector, 𝑟 is the radius vector, 𝑛(𝑟) is the index of 

refraction, and 𝑐 is the speed of light in a vacuum. For monochromatic waves, the 

solutions of Eq. (34) have the form:

𝐸 𝑟, 𝑡 = 𝐸 𝑟 𝑒𝑗ω𝑡

∇2𝐸 𝑟, 𝑡 + 𝑘2𝑛2 𝑟 𝐸 𝑟 = 0

where 𝑘 ≡ Τ𝜔 𝑐 = Τ2𝜋 𝜆 . If we assume, for convenience, a uniform plane wave 

propagating in the 𝑧 direction. 𝐸(𝑟)𝐸(𝑥, 𝑦)exp(−𝑗𝛽𝑧), 𝛽 is the a propagation constant, 

then Eq. (36) becomes:

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝜕2𝐸𝑦 𝑥 /𝜕𝑦2 + 𝑘2𝑛2 − 𝛽2 𝐸𝑦 𝑥 = 0

34

35
36

37

Alina Karabchevsky, Integrated Photonics 49



REGIONS

Since the waveguide is assumed infinite in the y direction, by writing Eq. (37) 
separately for the three regions in 𝑥, we get:

Region 1:   0 ≤ 𝑥 ≤ ∞

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛1
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

Region 2:   −𝑡𝑔 ≤ 𝑥 ≤ 0

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛2
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

Region 3:   −∞ ≤ 𝑥 ≤  −𝑡𝑔

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛3
2 − 𝛽2 𝐸𝑦 𝑥 = 0 
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REGIONS

The solutions of Eq. (34) are either sinusoidal or exponential functions of 𝑥 in each of 

the regions, depending on whether 𝑘2𝑛𝑖
2 − 𝛽2  for 𝑖 = 1, 2, 3, is greater than or less 

than zero. Of course, 𝐸(𝑥, 𝑦) and 𝜕𝐸(𝑥, 𝑦)/𝜕𝑥 must be continuous at the interface 

between layers.

Waveguiding condition:

𝑛2 > 𝑛3 ≥ 𝑛1   or   𝑛2 > 𝑛1 ≥ 𝑛3
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REGION 1

Domain 1: 0 ≤ 𝑥 ≤ ∞

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛1
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

▪ From the waveguiding condition in layer 2

𝑘𝑛2 sin 𝜙2 > 𝑘𝑛1  ⇒  𝛽 > 𝑘𝑛1  ⇒  𝑘2𝑛1
2 − 𝛽2 < 0 

▪ Exponential solution of the wave equation

𝐸𝑦 𝑥 = 𝐴𝑒−𝑞𝑥 

While 𝑞 = 𝛽2 − 𝑘2𝑛1
2
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REGION 2

Domain 2: −𝑡𝑔 ≤ 𝑥 ≤ 0

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛2
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

▪ From the waveguiding condition in layer 2

𝑘𝑛2 > 𝑘𝑛2 sin 𝜙 , sin < 1 ⇒ 𝛽 < 𝑘𝑛2  ⇒  𝑘2𝑛2
2 − 𝛽2 > 0 

▪ Sinusoidal solution of the wave equation

𝐸𝑦 𝑥 = 𝐵 cos(ℎ𝑥) + 𝐶 sin(ℎ𝑥) 

While ℎ = 𝑘2𝑛2
2 − 𝛽2 is the propagation constant in 𝑥 direction.

Alina Karabchevsky, Integrated Photonics 53



WAVE OPTICS VS. RAY OPTICS ANALYSIS 
IN REGION 2
Domain 2: −𝑡𝑔 ≤ 𝑥 ≤ 0

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛2
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

▪ Using Pythagorean relation:

𝛽2 + ℎ2 = 𝑘2𝑛2
2 

𝑘2 = 𝜔𝑛2/𝑐 with 𝜔 constant. 𝑘𝑛2, 𝛽 and ℎ are the propagation constants with units of

1/length.

▪ Plane wave propagates in 𝑧 direction with angle of:

𝜙𝑚 = tan−1(𝛽𝑚/ℎ𝑚) 

While 𝑞 = 𝑘2𝑛2
2 − 𝛽2

𝜙𝑚, ℎ𝑚 and 𝛽𝑚 belong to the discrete mode 𝑚.
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REGION 3

Domain 3: −∞ ≤ 𝑥 ≤ −𝑡𝑔

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛3
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

▪ From the waveguiding condition in layer 2

𝑘𝑛2 sin 𝜙 > 𝑘𝑛3  ⇒  𝛽 > 𝑘𝑛3  ⇒  𝑘2𝑛3
2 − 𝛽2 > 0 

▪ Exponential solution of the wave equation

𝐸𝑦 𝑥 = 𝐷𝑒𝑝(𝑥+𝑡𝑔) 

While 𝑝 = 𝛽2 − 𝑘2𝑛3
2 is the propagation constant in 𝑥 direction and 𝑥 + 𝑡𝑔 < 0.
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TE SOLUTION IN REGIONS: SUMMARY

▪ Wave equation

𝜕2𝐸𝑦 𝑥 /𝜕𝑥2 + 𝑘2𝑛3
2 − 𝛽2 𝐸𝑦 𝑥 = 0 

with 𝑖 = 1, 2, 3

Domain 1: 0 ≤ 𝑥 ≤ ∞

𝐸𝑦 𝑥 = 𝐴𝑒−𝑞𝑥  with  𝑞 = 𝛽2 − 𝑘2𝑛1
2

Domain 2: −𝑡𝑔 ≤ 𝑥 ≤ 0

𝐸𝑦 𝑥 = 𝐵 cos(ℎ𝑥) + 𝐶 sin(ℎ𝑥)  with  ℎ = 𝑘2𝑛2
2 − 𝛽2

Domain 3: −∞ ≤ 𝑥 ≤ −𝑡𝑔

𝐸𝑦 𝑥 = 𝐷𝑒𝑝(𝑥+𝑡𝑔)  with  𝑝 = 𝛽2 − 𝑘2𝑛3
2  and 𝑥 + 𝑡𝑔 < 0
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CONSTANTS

I  𝐸𝑡1 = 𝐸𝑡2

   𝐸𝑦 𝑥 = 0+ = 𝐸𝑦 𝑥 = 0− ⇒ 𝐴 = 𝐵 

II  𝐸𝑡2 = 𝐸𝑡3

    𝐸𝑦 𝑥 = −𝑡𝑔
+ = 𝐸𝑦 𝑥 = −𝑡𝑔

− ⇒ 𝐵 cos(−𝑡𝑔ℎ) + 𝐶 sin(−𝑡𝑔ℎ) = 𝐷 

III  𝐻𝑡1 = 𝐻𝑡2

     𝐻𝑧 0+ = 𝐻𝑧 0− ⇒ 𝐴 = −
ℎ𝐶

𝑞
 

Solution:  𝐸𝑦(𝑥) Domain

𝐴𝑒−𝑞𝑥 0 ≤ 𝑥 ≤ ∞

𝐵 cos(ℎ𝑥) + 𝐶 sin(ℎ𝑥) −𝑡𝑔 ≤ 𝑥 ≤ 0

𝐷𝑒𝑝(𝑥+𝑡𝑔) −∞ ≤ 𝑥 ≤ −𝑡𝑔

𝐻𝑧 = 𝑗
1

ωμ

𝜕𝐸𝑦

𝜕𝑥
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SURVEY: BOUNDARY CONDITIONS

▪ EasyPolls:
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BOUNDARY CONDITIONS

▪ The boundary conditions define the behavior of 
the electric and the magnetic fields on the 
boundary.

▪ Assume two different media with permittivity of 휀1 
and 휀2, as shown in the figure.

▪ The electric field - 𝐸 and the magnetic field 𝐻 can 
be decomposed to the tangential (𝑡) and vertical 
(𝑛) components.

𝐸 = 𝐸𝑛 + 𝐸𝑡 𝐻 = 𝐻𝑛 + 𝐻𝑡
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑡
▪ Assume electric field in medium 1 ( 휀1 ). From 

Faraday’s law:

ර 𝐸 ∙ 𝑑𝑙 = − ඵ
𝜕𝐵

𝜕𝑡
𝑑𝐴 = 0

▪ Faraday’s law for closed loop 𝑎 ⇒ 𝑏 ⇒ 𝑐 ⇒ 𝑑 is:

ර 𝐸 ∙ 𝑑𝑙 = න
𝑎

𝑏

… + න
𝑏

𝑐

… + න
𝑐

𝑑

… + න
𝑑

𝑎

… = 0

▪ Assuming 𝑎 − 𝑑 and 𝑏 − 𝑐 equal 0 then:

ර 𝐸 ∙ 𝑑𝑙 = න
𝑎

𝑏

… + න
𝑐

𝑑

…
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑡
▪ 𝑎

𝑏
… ≈ 𝐸𝑡1Δ𝑙  and 𝑐

𝑑
… ≈ −𝐸𝑡2Δ𝑙  therefore 𝐸𝑡1Δ𝑙

− 𝐸𝑡2Δ𝑙 = 0 and:

𝐸𝑡1 = 𝐸𝑡2

▪ The tangential components of the electric field are 
continuous on the boundary.

▪ In addition, 𝐷𝑖 = 휀𝑖𝑗𝐸𝑗 therefore:

𝐷𝑡1

휀1
=

𝐷𝑡2

휀2

The tangential components of the electric 
displacement field are not continuous on the 
boundary.
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑛
▪ From Gauss’s law:

ර 𝐷 ∙ 𝑑𝐴 = ම 𝜌 𝑑𝑣 = 𝑄enclosed

▪ The figure shows that the surrounded charge is a 
surface.

▪ We write Gauss’s law as:

ර 𝐷 ∙ 𝑑𝐴 = ඵ 𝜌𝑠 𝑑𝐴

where 𝜌𝑠  (units of [C/m2] is the charge on the 
boundary.
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑛
▪ We write the equation as:

−𝐷𝑛1∆𝐴1 + 𝐷𝑛2∆𝐴2 = 𝜌𝑠∆𝐴

▪ Vertical vectors are defined far from the boundary 

and the electric field is in medium 1.

▪ Since ∆𝐴1 = ∆𝐴2 = ∆𝐴 therefore:

−𝐷𝑛1 + 𝐷𝑛2 = 𝜌𝑠
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑛
▪ In addition:

−휀1휀0𝐸𝑛1 + −휀2휀0𝐸𝑛2 = 𝜌𝑠

▪ Without charge on the boundary, we get:

𝐷𝑛1 = 𝐷𝑛2

and

휀1𝐸𝑛1 = 휀2𝐸𝑛2

The vertical components of the electric 

displacement field are continuous between the two 

media but the vertical components of the electric 

field are not.
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑡
▪ Assume boundary between two media with 

different permeability of 𝜇1 and 𝜇2.

▪ Assume Ampere’s law without currents on the 
boundary:

ර 𝐻 ∙ 𝑑𝑙 = ඵ 𝐽 +
𝜕𝐷

𝜕𝑡
𝑑𝐴 = 0

For closed loop is:

ර … = න
𝑎

𝑏

… + න
𝑏

𝑐

… + න
𝑐

𝑑

… + න
𝑑

𝑎

… = 0

▪ Assuming 𝑎 − 𝑑 and 𝑏 − 𝑐 equal 0 then:

ර 𝐻 ∙ 𝑑𝑙 = න
𝑎

𝑏

… + න
𝑐

𝑑

… = 0
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑡
▪ 𝑎

𝑏
… ≈ 𝐻𝑡1Δ𝑙  and 𝑐

𝑑
… ≈ −𝐻𝑡2Δ𝑙  therefore 𝐻𝑡1Δ𝑙

− 𝐻𝑡2Δ𝑙 = 0 and so:

𝐻𝑡1Δ𝑙 = 𝐻𝑡2Δ𝑙

The tangential components of the magnetic field are 

continuous on the boundary between the two media.

▪ From 𝐵 = 𝜇𝐻 we get:

𝐵𝑡1

𝜇1
=

𝐵𝑡2

𝜇2

The tangential component of the magnetic flux 

density are not continuous on the boundary 

between the two media.
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑛
▪ From magnetic Gauss’s law:

ර 𝐵 ∙ 𝑑𝐴 = 0

▪ From the figure:

ර … = ර
top

… + ර
side

… + ර
bottom

… = 0

▪ We shrink the cylinder - ׯside
…  → 0 therefore:

ර
top

… ≈ 𝐵𝑛1∆𝐴 and ර
bottom

… ≈ 𝐵𝑛2∆𝐴

▪ We get:

𝐵𝑛1 = 𝐵𝑛2  𝜇1𝐻𝑛1 = 𝜇2𝐻𝑛2
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑛
The vertical components of the magnetic flux 
density are continuous on the boundary, but the 
vertical components of the magnetic field are not.
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BOUNDARY CONDITIONS

I. 𝐸𝑡1 = 𝐸𝑡2

II. 𝐸𝑡2 = 𝐸𝑡3

III. 𝐻𝑡1 = 𝐻𝑡2

IV. 𝐻𝑡2 = 𝐻𝑡3
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CONSTANTS

I  𝐸𝑡1 = 𝐸𝑡2

   𝐸𝑦 𝑥 = 0+ = 𝐸𝑦 𝑥 = 0− ⇒ 𝐴 = 𝐵 

II  𝐸𝑡2 = 𝐸𝑡3

    𝐸𝑦 𝑥 = −𝑡𝑔
+ = 𝐸𝑦 𝑥 = −𝑡𝑔

− ⇒ 𝐵 cos(−𝑡𝑔ℎ) + 𝐶 sin(−𝑡𝑔ℎ) = 𝐷 

III  𝐻𝑡1 = 𝐻𝑡2

     𝐻𝑧 0+ = 𝐻𝑧 0− ⇒ 𝐴 = −
ℎ𝐶

𝑞
 

Solution:  𝐸𝑦(𝑥) Domain

𝐴𝑒−𝑞𝑥 0 ≤ 𝑥 ≤ ∞

𝐵 cos(ℎ𝑥) + 𝐶 sin(ℎ𝑥) −𝑡𝑔 ≤ 𝑥 ≤ 0

𝐷𝑒𝑝(𝑥+𝑡𝑔) −∞ ≤ 𝑥 ≤ −𝑡𝑔
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BOUNDARY CONDITIONS

I. 𝐸𝑡1 = 𝐸𝑡2

II. 𝐸𝑡2 = 𝐸𝑡3

III. 𝐻𝑡1 = 𝐻𝑡2

IV. 𝐻𝑡2 = 𝐻𝑡3

Alina Karabchevsky, Integrated Photonics 72



CONSTANTS

I  𝐸𝑡1 = 𝐸𝑡2

   𝐸𝑦 𝑥 = 0+ = 𝐸𝑦 𝑥 = 0− ⇒ 𝐴 = 𝐵 

II  𝐸𝑡2 = 𝐸𝑡3

    𝐸𝑦 𝑥 = −𝑡𝑔
+ = 𝐸𝑦 𝑥 = −𝑡𝑔

− ⇒ 𝐵 cos(−𝑡𝑔ℎ) + 𝐶 sin(−𝑡𝑔ℎ) = 𝐷 

III  𝐻𝑡1 = 𝐻𝑡2

     𝐻𝑧 0+ = 𝐻𝑧 0− ⇒ 𝐴 = −
ℎ𝐶

𝑞
 

Solution:  𝐸𝑦(𝑥) Domain

𝐴𝑒−𝑞𝑥 0 ≤ 𝑥 ≤ ∞

𝐵 cos(ℎ𝑥) + 𝐶 sin(ℎ𝑥) −𝑡𝑔 ≤ 𝑥 ≤ 0

𝐷𝑒𝑝(𝑥+𝑡𝑔) −∞ ≤ 𝑥 ≤ −𝑡𝑔
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CONSTANTS

Let 𝐾 = 𝐴, we formulate 𝐵, 𝐶, 𝐷 via 𝐾

𝐾 = 𝐵, 𝐾 cos 𝑡𝑔ℎ −
𝑞

ℎ
sin 𝑡𝑔ℎ = 𝐷, 𝐶 = −

𝐾𝑞

ℎ

𝐾𝑚 = 2ℎ𝑚

𝜔𝜇

𝛽𝑚 𝑡𝑔 +
1

𝑞𝑚
+

1
𝑝𝑚

ℎ𝑚
2 + 𝑞𝑚

2

Solution:  𝐸𝑦(𝑥) Domain

𝐾𝑒−𝑞𝑥 0 ≤ 𝑥 ≤ ∞

𝐾 cos ℎ𝑥 −
𝑞

ℎ
sin ℎ𝑥 −𝑡𝑔 ≤ 𝑥 ≤ 0

𝐾 cos ℎ𝑡𝑔 − sin ℎ𝑡𝑔 𝑒𝑝(𝑥+𝑡𝑔) −∞ ≤ 𝑥 ≤ −𝑡𝑔
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CONSTANTS
To find one remaining constant 𝐾, we normalized the field so that it has a power flow of 1 W/m in the 

y direction per unit width using the Poynting vector:

−
1

2
න

−∞

∞

𝐸𝑦𝐻𝑥
∗ 𝑑𝑥 =

β𝑚

2ωμ
න

−∞

∞

ℰ𝑦 𝑥
2

𝑑𝑥 = 1

we have:

න
−∞

∞

ℰ𝑦 𝑥
2

𝑑𝑥 =

න
−∞

0

𝐾𝑚 cos ℎ𝑚𝑡𝑔 − sin ℎ𝑚𝑡𝑔 exp[𝑝𝑚(𝑥 + 𝑡𝑔)]
2

𝑑𝑥

+ න
−𝑡𝑔

0

𝐾𝑚 cos ℎ𝑚𝑥 − 𝑞𝑚/ℎ𝑚 sin ℎ𝑚𝑥 2 𝑑𝑥

+ න
0

∞

𝐾𝑚 exp −𝑞𝑚𝑥 2𝑑𝑥 =
2𝜔𝜇

𝛽𝑚

Solving (39) yields:

𝐾𝑚 = 2ℎ𝑚

𝜔𝜇

𝛽𝑚 𝑡𝑔 +
1

𝑞𝑚
+

1
𝑝𝑚

ℎ𝑚
2 + 𝑞𝑚

2

39

38

40
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POSSIBLE OPTICAL MODES IN A SLAB 
WAVEGUIDE

Figure 6: Diagram of the possible modes in a slab waveguide
Alina Karabchevsky, Integrated Photonics 76



H.W.

Submission due is next week

[1] Derive the expressions for the constants of the TE solution of the wave equation.

[2] Derive the solution of the TM wave equation.

Submit the detailed derivations to: alinak@bgu.ac.il.
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BOUNDARY CONDITION IV

𝐻𝑡2 = 𝐻𝑡3

𝐻𝑧 𝑥 = −𝑡𝑔
+ = 𝐻𝑧 𝑥 = −𝑡𝑔

−

𝜕𝐸𝑦 𝑥 = −𝑡𝑔
+

𝜕𝑥
=

𝜕𝐸𝑦 𝑥 = −𝑡𝑔
−

𝜕𝑥

▪ Transcendental equation for solving the allowed 𝛽 graphically or numerically.

tan ℎ𝑡𝑔 =
𝑝 + 𝑞

ℎ 1 −
𝑝𝑞
ℎ2

42

43

41
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EXAMPLE: FINDING 𝛽 FOR TE MODES

Figure 7: Finding the propagation constant using a numerical simulation.
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THE SYMMETRIC WAVEGUIDE

▪ The guiding condition
𝑛2 > 𝑛3 = 𝑛1

▪ At cutoff, the point at which the field becomes oscillatory in Regions 1 and 3, the 
magnitude of 𝛽 is given by:

𝛽 = 𝑘𝑛1 = 𝑘𝑛3

▪ By substituting 𝛽 in equations of ℎ, 𝑝 and 𝑞 

When 𝜷 = 𝒌𝒏𝟑 = 𝒌𝒏𝟏:

𝑞 = 𝛽2 − 𝑘2𝑛1
2

𝛽=𝑘𝑛1
= 0 

𝑝 = 𝛽2 − 𝑘2𝑛3
2

𝛽=𝑘𝑛3
= 0 

ℎ = 𝑘2𝑛2
2 − 𝛽2 = 𝑘 𝑛2

2 − 𝑛1
2 Alina Karabchevsky, Integrated Photonics 80



THE SYMMETRIC WAVEGUIDE

▪ By substituting 𝑞 = 0, 𝑝 = 0 in transcendental equation - tan ℎ𝑡𝑔 =
𝑝+𝑞

ℎ 1−
𝑝𝑞

ℎ2

tan ℎ𝑡𝑔 𝑝=0,𝑞=0
= 0

𝑚𝑠 = 0, 1, 2, …  is number of a symmetric mode

ℎ𝑡𝑔 = 𝑚𝑠𝜋 with 𝑚𝑠 = 0, 1, 2, … ⇒ points of tan = 0, therefore:

𝑘𝑡𝑔 𝑛2
2 − 𝑛1

2 = 𝑚𝑠𝜋

𝑛2
2 − 𝑛1

2 = 𝑛2 − 𝑛1

∆𝑛

𝑛2 + 𝑛1 = ∆𝑛 𝑛2 + 𝑛1 ;  𝑘 =
2𝜋

𝜆0
 

∆𝑛 =
𝑚𝑠

2𝜋2𝜆0
2

𝑡𝑔
2 𝑛2 + 𝑛1 2𝜋 2

=
𝑚𝑠

2𝜆0
2

4𝑡𝑔
2 𝑛2 + 𝑛1

45

44
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THE SYMMETRIC WAVEGUIDE

▪ The cut-off condition

Δ𝑛 = 𝑛2 − 𝑛1 >
𝑚𝑠

2λ0
2

4𝑡𝑔
2 𝑛2 + 𝑛1

ณ≈
𝑛2≅𝑛1

𝑚𝑠
2λ0

2

8𝑡𝑔
2𝑛2

▪ The lowest-order mode 𝑚𝑠 = 0 of the symmetric waveguide does not exhibit a 
cutoff. 

▪ All other modes do exhibit a cutoff.

▪ In principle, any wavelength could be guided in this mode even with an 
incrementally small Δ𝑛.

▪ For small Δ𝑛 and/or large 𝜆0/𝑡𝑔:

1) Poor confinement.

2) Relatively large evanescent tails of the mode extending into the substrate.
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THE ASYMMETRIC WAVEGUIDE

▪ The guiding condition 𝑛2 > 𝑛3 ≫ 𝑛1

▪ Since 𝑛2 > 𝑛3

Δ𝑛 = 𝑛2 − 𝑛3 >
𝑚𝑠

2𝜆0
2

4𝑡𝑔
2 𝑛2 + 𝑛3

To approximate the asymmetric waveguide, we substitute 

𝑡𝑔 = 2𝑡𝑔 and 𝑚𝑠 = 2𝑚𝑎 + 1 ⇒ Δ𝑛 = 𝑛2 − 𝑛3 >
2𝑚𝑎+1 2𝜆0

2

4 2𝑡𝑔
2

𝑛2+𝑛3

▪ Cutoff condition

Δ𝑛 = 𝑛2 − 𝑛3 >
2𝑚𝑎 + 1 2𝜆0

2

16𝑡𝑔
2 𝑛2 + 𝑛3

ณ≈
𝑛2≅𝑛3

2𝑚𝑎 + 1 2𝜆0
2

32𝑛2𝑡𝑔
2

where the 𝑚𝑎 is the asymmetric mode order.

• Note: This is an estimated model. For a more accurate solution, the transcendental 
equation, shown in slide 78, needs to be solved Alina Karabchevsky, Integrated Photonics 83



SYMMETRIC VS. ASYMMETRIC WAVEGUIDE

Figure 8: Cross-section of the modes for symmetric and asymmetric waveguide.
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EXPERIMENTAL OBSERVATION OF 
WAVEGUIDE MODES
▪ The lowest order mode (𝑚 = 0) appears as a single band of light, while higher 

order modes have a correspondingly increased number of bands.

Figure 9: Diagram of an experimental setup that can be used to measure optical 
mode shapes.
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OPTICAL MODES IN SLAB WAVEGUIDE
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OPTICAL MODES IN PLANAR WAVEGUIDE

▪ The light image appears as a band rather than a spot because it is confined by the 

waveguide only in the 𝑥 direction. Since the waveguide is much wider than its 

thickness, the laser beam is essentially free to diverge in the 𝑦 direction.

▪ To obtain a quantitative display of the mode profile, i.e., optical power density vs. 

distance across the facet of the waveguide, a rotating mirror is used to scan the 

image of the waveguide facet across a photodetector that is masked to a narrow slit 

input. The electrical signal from the detector is then fed to the vertical scale of an 

oscilloscope on which the horizontal sweep has been synchronized with the mirror 

scan rate. 

▪ The result is in the form of graphic displays of the mode shape, like those shown in 

the next frame:
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EXPERIMENTAL MODE ANALYSIS

▪ Note that the modes have the theoretically 

predicted sinusoidal shape in waveguide 

guiding layer and exponential shape beyond 

it. Optical power density, or intensity, which is 

proportional to 𝐸2. 

▪ Details of the mode shape, like the rate of 

exponential decay (or extinction) of the 

evanescent ”tail” extending across the 

waveguide-substrate and waveguide-air 

interfaces, depend strongly on the values of 

𝛿 at the interface.
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EXPERIMENTAL MODE ANALYSIS

▪ As can be seen in Fig. above, the extinction is much sharper at the waveguide-air 
interface where Δ𝑛 ≃ 2.5 than at the waveguide-substrate plane where Δ𝑛 ≃ 0.01– 0.1.

▪ A system like that shown in Fig. 8 is particularly useful for analysis of mode shapes in 
semiconductor waveguides, which generally support only one or two modes because of 
the relatively small Δ𝑛 at the waveguide-substrate interface. Generally, the position of 
the focused input laser beam can be moved toward the center of the waveguide to 
selectively pump the zeroth order mode, or toward either the air or substrate interface 
to select the first order mode. 

▪ It becomes very difficult to visually resolve the light bands in the case of higher-order, 
multimode waveguides because of spatial overlapping, even though the modes may be 
electromagnetically distinct and non-coupled one to another. 

▪ Waveguides produced by depositing thin films of oxides, nitrides or glasses onto glass 
or semiconductor substrates usually are multi-mode, supporting 3 or more modes, 
because of the larger waveguide substrate Δ𝑛.
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EXPERIMENTAL OBSERVATION OF 
WAVEGUIDE MODES

Figure 10: Butt-coupling to a channel waveguide.
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ION EXCHANGE CHANNEL OPTICAL 
WAVEGUIDES

Figure 11: Butt-coupling to a channel waveguide.
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COMMON LATERALLY CONFINED PASSIVE 
WAVEGUIDE STRUCTURES

Figure 12: Common laterally confined passive waveguide structures: (a) a strip-
loaded waveguide made of nitride on a silica substrate covered by silica, (b) a ridge 
waveguide made of nitride on a silica substrate, (c) a rib waveguide made of silicon 
on a silica substrate, (d) a waveguide buried in silica glass, and (e) a diffused 
waveguide in borosilicate glass from A. Katiyi and A. Karabchevsky Lightwave 
Technology 35:14, 2902 - 2908, (2017)
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𝐸𝑥 MODES OF AN OPTICAL WAVEGUIDE

Figure 13: Quasi-TE polarization. Colormaps of 𝐸𝑥 𝑥, 𝑦 , normalized to the 
maximum amplitude in single-mode waveguides: (a) slab, (b) buried, (c) rib, (d) 
diffused, (e) ridge, and (f) strip-loaded from A. Katiyi and A. Karabchevsky 2017.
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𝐸𝑦 MODES OF AN OPTICAL WAVEGUIDE

Figure 14: Quasi-TM polarization. Colormaps of 𝐸𝑦 𝑥, 𝑦 , normalized to the 

maximum amplitude in single-mode waveguides: (a) slab, (b) buried, (c) rib, (d) 
diffused, (e) ridge, and (f) strip-loaded from A. Katiyi and A. Karabchevsky 2017.
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STRIP LOADED WAVEGUIDE

Figure 15: Quasi-TE polarization. 𝐸𝑥 𝑥, 𝑦  modes are normalized to the maximum 

amplitude while varying the width of the strip in the strip-loaded waveguides. The 

indicated values represent the cross-section profiles (a) and the change in the 

effective mode index (b) of the waveguide width with the strip width from A. Katiyi 

and A. Karabchevsky 2017.
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THE PRISM COUPLER USED AS A DEVICE 
FOR MODAL ANALYSIS
▪ The prism coupler has the property that it selectively couples light into (or out of) a 

particular mode, depending on the angle of incidence (or emergence). The mode-

selective property of the prism coupler, results from the fact that light in each mode 

within a waveguide propagates at a different velocity, and continuous phase-

matching is required for coupling. The particular angle of incidence required to 

couple light into a given mode or the angle of emergence of light coupled out of a 

given mode can both be accurately calculated.
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THE RAY-OPTIC APPROACH TO OPTICAL 
MODE THEORY
▪ Plane waves propagating along the 𝑧 direction, support one or more optical modes. 

The light propagating in each mode travels in the 𝑧 direction with a different phase 

velocity, which is characteristic of that mode. This description of wave propagation 

is generally called the physical-optic approach. An alternative method, the so-

called ray-optic approach.

▪ The light propagating in the 𝑧 direction is considered to be composed of plane 

waves moving in zig-zag paths in the 𝑥-𝑧 plane undergoing total internal reflection 

at the interfaces bounding the waveguide. The plane waves comprising each mode 

travel with the same phase velocity. However, the angle of reflection in the zigzag 

path is different for each mode, making the 𝑧 component of the phase velocity 

different. The plane waves are generally represented by rays drawn normal to the 

planes of constant phase which explains the name ray-optic.
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RAY PATTERNS IN THE THREE-LAYER 
PLANAR WAVEGUIDE
▪ The ray patterns shown here, correspond to two modes, say the TE0 and TE1, 

propagating in three layers waveguide with 𝑛2 > 𝑛3 > 𝑛1. The electric (𝑬) and 

magnetic (𝑯) fields of these plane waves traveling along zig-zag paths would add 

vectorially to give the 𝑬 and 𝑯 distributions of the waves comprising the same two 

modes, propagating in the 𝑧  direction. Both the ray-optic and physical-optic 

formulations can be used to represent either TE waves, with components 𝐸𝑦, 𝐻𝑧, 

and 𝐻𝑥, or TM waves, with components 𝐻𝑦, 𝐸𝑧 and 𝐸𝑥.
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THE DISCRETE NATURE OF THE 
PROPAGATION CONSTANT 𝛽
▪ The solution of Maxwell’s equation subject to the appropriate boundary conditions 

requires that only certain discrete values of 𝛽 are allowed. Thus, there are only a limited 

number of guided modes that can exist when 𝛽 is in the range (see Fig. 5 slide 6)

𝑘𝑛3 ≤ 𝛽 ≤ 𝑘𝑛2

▪ The plane wavefronts that are normal to the zig-zag rays are assumed to be infinite, or at 

least larger than the cross section of the waveguide that is intercepted; otherwise, they 

would not fit the definition of a plane wave, which requires a constant phase over the plane. 

▪ Thus, there is much overlapping of the waves as they travel in the zig-zag path. To avoid 

decay of optical energy due to destructive interference as the waves travel through the 

guide, the total phase change for a point on a wavefront that travels from the 𝑛2 − 𝑛3 

interface to the 𝑛2 − 𝑛1 interface and back again must be a multiple of 2𝜋.

46
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GOOS-HANCHEN SHIFT

2𝑘𝑛2𝑡𝑔 sin 𝜃𝑚 − 2𝜙23 − 2𝜙21 = 2𝑚𝜋

𝑡𝑔 is the thickness of the waveguiding Region 2, 𝜃𝑚 is the angle of reflection with 

respect to the 𝑧 direction, m is the mode number and 𝜙23 and 𝜙21 are the phase 

changes suffered upon total internal reflection at the interfaces. The phases −2𝜙23 

and −2𝜙21, represent the Goos-Hanchen shifts. These phase shifts can be interpreted 

as penetration of the zig-zag ray (for a certain depth 𝛿) into the confining layers 1 

and 3 before it is reflected.

47
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GOOS-HANCHEN SHIFT

The phase shift of 𝜙23 and 𝜙21 for TM waves can be calculated from:

tan 𝜙23 =
𝑛2

2 sin2 𝜙2 − 𝑛3
2

𝑛2 cos 𝜙2

tan 𝜙21 =
𝑛2

2 sin2 𝜙2 − 𝑛1
2

𝑛2 cos 𝜙2

The phase shift of 𝜙23 and 𝜙21 for TM waves can be calculated from:

tan 𝜙23 =
𝑛2

2 𝑛2
2 sin2 𝜙2 − 𝑛3

2

𝑛3
2𝑛2 cos 𝜙2

tan 𝜙21 =
𝑛2

2 𝑛2
2 sin2 𝜙2 − 𝑛1

2

𝑛1
2𝑛2 cos 𝜙2

(48)

(49)

(50)

(51)
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GOOS-HANCHEN SHIFT

The substitution of either (49) or (51) into (47) results in a transcendental equation in 

only one variable, 𝜃𝑚 or 𝜙𝑚, where:

𝜙𝑚 =
𝜋

2
− 𝜃𝑚

For a given 𝑚, the parameters 𝑛1, 𝑛2, 𝑛3, 𝑡, 𝜙𝑚 (or 𝜃𝑚) can be calculated. Thus, a 

discrete set of reflection angles 𝜙𝑚  are obtained corresponding to the various 

modes.

52
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VALID SOLUTIONS

▪ Valid solutions do not exist for all values of m. There is a cutoff condition on allowed 
values of m for each set of 𝑛1, 𝑛2, 𝑛3 and 𝑡, corresponding to the point at which 𝜙𝑚 
becomes less than the critical angle for total internal reflection at either the 𝑛2 − 𝑛3 
or the 𝑛2 − 𝑛1 interface.

▪ For each allowed mode, there is a corresponding propagation constant 𝛽𝑚 given 
by:

𝛽𝑚 = 𝑘𝑛2 sin 𝜙𝑚 = 𝑘𝑛2 cos 𝜃𝑚

▪ The velocity of the light parallel to the waveguide is then given by:

𝑣 = 𝑐
𝑘

𝛽

▪ The effective index of refraction for the guide is:

𝑛eff =
𝑐

𝑣
=

𝛽

𝑘

53

54

55

Alina Karabchevsky, Integrated Photonics 103



THE FORMATION OF MODES (STANDING 
WAVES)
▪ The Figure below schematically shows the formation of modes (standing waves) for 

(a) the fundamental mode and (b) a higher-order mode, respectively, through the 

interference of light waves.

▪ The solid line represents a positive phase front and a dotted line represents a 

negative phase front, respectively. The electric field amplitude becomes the 

maximum (minimum) at the point where two positive (negative) phase fronts 

interfere.
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