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O0PTICAL FIBER

In its simplest form, a step-index fiber
consists of a cylindrical core surrounded by
a cladding layer whose index is slightly
lower than the core.

Both core and cladding use silica as the base
material; the difference in the refractive
indices is realized by doping the core, or the
cladding, or both.

Dopants such as GeO, and P,0O; increase
the refractive index of silica and are
suitable for the core.

Dopants such as B,O; and fluorine
decrease the refractive index of silica and
are suitable for the cladding.



REFLECTION AND

Assumptions:

= Plane wave propagation.
= Linear medium.
= Isotropic medium.

= Smooth planar optical interface.

Figure 1: Plane wave reflection and
refraction at an optical interface [1].
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FRESNEL'S FIELD REFLECTIVITY

The reflectivity for optical field components parallel to the incident plane as:
E"y nycosB; —n,cosB,

- — = 1
PI E'y nycosB, + n,cosb, )
In order to eliminate 6,, we can use Snell’s Law:
n 2
ng [1-— (—1 sin 01) —n, cos 0,
n;
Pi = (2)

n 2
ny [1— (n—; sin 91) + n, cos 0,

Similar analysis can also find the reflectivity for optical field components
perpendicular to the incident plane as:




FIELD REFLECTIVITY

Similar analysis can also find the reflectivity for optical field components
perpendicular to the incident plane as:

E", nycosb; —n;cos6,

pL = (3)

E', n;cosB;+n,cosO,

n 2
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n;
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n 2
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FIELD REFLECTIVITY

Power reflectivities for parallel and perpendicular field components are therefore:

2
2 |ETy
Ry=lpil = |7 (5)
and
ET |
R, =|p.I? = El ©)
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FRESNEL'S POWER TRANSMISSION
COEFTICIENTS

According to energy conservation, the power transmission coefficients can be found
as:

Et” 2
hy=1z| =1—|p (7)
w7 =1l
and
Et,|?
r, = | T 1—1p.l? (8)
1

In practice, for an arbitrary incidence polarization state, the input field can always be
decomposed into E; and E, components. Each can be treated independently.
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SPECIAL CASE: NORMAL INCIDENCE

Normal incidence is when a light is launched perpendicular to the material
interface. In this case, 8; = 6, = 0 and cos 6; = cos 8, = 1. The field reflectivity can be

simplified as:
ng —nj

P =PL= (9)

nq + no
= nq, > n,: there is no phase shift between incident and reflected field (the phase of
both p, and p, 1s zero)

= nqy < ny: there is a phase shift for both p, and p, because they both become
negative

With normal incidence, the power reflectivity is:

2
ny —n,

P = pPL = (10)

nq +n2
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CRITICAL ANGLE

Critical angle is defined as an incident angle 6; at which total reflection happens at

the interface. According to Fresnel Equations (2) and (4), total reflection (p; = p,
= 1) occurs when %sin 6, =1or
2
n

. 2
91 = 9(; = Sin 1 <n_1> (11)
where 0, is the critical angle.

= Obviously, the necessary condition to have a critical angle depends on the
interface condition. First, if n; < n,, there is not real solution for sin"*(n,/n,).

= It means that when a light beam goes from a low index material to a high index
material, total reflection is not possible.
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CRITICAL ANGLE

= Second, if n; > n,, a real solution can be found for 6, = sin"'(n,/n,). Therefore,
total reflection can only happen when a light beam launches from a high index
material to a low index material.

= It is important to note that at a larger incidence angle 6, > 8., 1 — (n,;/n, - sin 8,)*
< 0and./1— (n,/n, - sin6;)? becomes imaginary.

Equations (2) and (4) show that if /T — (n/n, - sin 6;)2 is imaginary, |p,|* = |p.|? = 1.
The important conclusion is that for all incidence angles satisfying 6, = 6., total
internal reflection will happen with R = 1.

(see the side effect of TIR which is Evanescent field in Lecture 1)
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CRITICAL ANGLE

(@ | (b) |
|
Nl | Nl
Neo | Z N Neo
eZ | eZ
s \-l _
e d ec 7

Figure 2: Reflection at a planar interface between unbounded regions of refractive
indices n., and n. showing (a) total internal reflection and (b) partial reflection and
refraction.
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OPTICAL FIELD PHASE SHIFT BETWEEN THE
INCIDENT AND THE REFLECTED BEAMS

= When 0, = 0, (partial reflection and partial transmission), both p, and p, are real
and therefore there is no phase shift for the reflected wave at the interface.

= When total internal reflection happens (6; > 6,), /1 — (n,/n, - sin6;)? is imaginary.
Fresnel Equations (2) and (4) can be written as:

3 jniJ1 — (ny/ny - sin ;)2 — n, cos 6,

- jn1\/1 — (ny{/n, - sin0,)? 4+ n, cos 64

(12)

PI

n, cos0; — jny /1 — (ny/n, - sin ;)2
PL =

(13)

ny cos B + jny/1 — (ny/n, - sin ;)2
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OPTICAL FIELD PHASE SHIFT BETWEEN THE
INCIDENT AND THE REFLECTED BEAMS

Therefore, the phase shift for the parallel and the perpendicular electrical field
components is:

ET| Jn.2sin2 ; — n,?
AD, = — | =—-2tan™!
I arg(El”> an ( 71 Cos 01 (14)
ETJ_ \/nlz/n22°sin231—1
Ad, =arg|—— )= —2tan™! (15)
Et, n, cos 64

This optical phase shift happens at the optical interface, which has to be considered
in optical waveguide design.
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BREWSTER ANGLE

Incident ray Reflected ray
(unpolarised) (polarised)
Refracted ray
(unpolarised)

Figure 3: Brewster angle for unpolarized ray.
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BREWSTER ANGLE - 65

Consider a light beam launching onto an optical interface.

If the input electrical field is parallel to the incidence plane, there is a specific
incidence angle 05 at which the reflection is equal to zero.

0y is defined as the Brewster angle.

Consider Fresnel Equation (2) for parallel field components. For p, = 0, the only
solution is tan tan 8; = n, = n; and Brewster angle is defined as:

n
HB = tan_l (n_2> HB + HR = 90 (16)
1
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BREWSTER ANGLE - 65

Two important points we need to note:

= The Brewster angle is only valid for the polarization component which has the
electrical field vector parallel to the incidence plane. For the perpendicular
polarized component, no matter how we choose 0,, total transmission will never
happen.

= py = 0 happens only at one angle 6, = 0. This is very different from the critical
angle where total reflection happens for all incidence angles within the range of

9C<91<T['

Brewster angle is often used to minimize the optical reflection and it can also be
used to select the polarization.

=)



BREWSTER ANGLE - 65
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Figure 4: Field reflectivities and phase shifts vs. incidence angle. Optical interface is
n; = 1.5andn, = 1.4 [1].
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RAY BOUNCING IN A FIBER

To confine and guide the lightwave signal within the fiber core, a total internal
reflection is required at the core-cladding interface. This requires the refractive

index of the core to be higher than the index of the cladding.
Ar

Step-index fiber
Figure 5: Index profiles of step-index [1].
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GEOMETRIC OPTICS ANALYSLS

Qe

Figure 6: Illustration of fiber propagation modes in geometric optics: (a) skew ray
trace and (b) meridional ray trace [1].
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NOMENCLATURE

Nomenclature for describing circular fibers. Cartesian coordinates x, y, z and
cylindrical polar coordinates p, ¢, z are oriented so that the z-axis lies along the
fiber axis. A representative graded profile varies over the core and is uniform over
the cladding, assumed unbounded.

Figure 7: Schematics of fiber circular cross-section [2].
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V-NUMBER

V-number, known as the waveguide parameter or waveguide frequency, is

dimensionless parameter defined as
21Qa
V= T\/TLCOZ — Tlclz (17)
Where n., is the maximum value of n(p), a the core radius, and A is the free-space

wavelength of light.

The quantity \/n.,2 — ny? is often referred to as the numerical aperture (NA) of the

fiber, while a related expression /n.,2 — ny? is sometimes called the local numerical
aperture.
n(p) = ne, O=p<a
n(p) = ng asp<ox
Neo 2> Ny
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CONSTRUCTION OF RAY PATHS OF A STEP-
INDEX FIBER

Between reflections the ray follows a
straight line and, on reflection from the
interface, its direction is determined by
Snell's laws. Thus, the incident ray,
reflected ray and normal, or radial
direction, lie in the same plane, and the
angles of incidence and reflection
relative to the normal are equal.

Ne|

Figure 8: (a) the zig-zag path of a
meridional ray and (b) the helical path of
a skew ray, together with their projections

onto the core cross-section [2]. @



MERIDIONAL RAYS

Meridional rays - rays which cross the fiber axis between reflections.

Note: Meridional rays lie in a plane of width 2p through the axis. Consequently, they
have properties identical with rays of the corresponding planar waveguide.

We label meridional rays with the angle 6, between the path and the z direction. The

ranges of 6, for bound and refracting meridional rays are given by bound ray (Eq.

18) and refracting ray (Eq. 19):

T
0<6, <56 (18)
T T
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BOUND (EQ. 18) AND REFRACTING (EQ. 19)
RAYS

Neo COS B = N cos O (20)

Figure 9: Zig-zag paths within the core of a step-profile planar waveguide for (a)
bound rays and (b) refracting rays [2].
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SKEW RAYS

Skew rays - rays which never cross the fiber axis.

= Skew rays, follow a helical path, whose projection onto the cross-section is a
regular polygon-not necessarily closed.

= To specify the trajectory of a skew ray in addition to the inclination 6, to the axial
direction, we need a second angle to indicate the skewness.

= We define 64 to be the angle in the core cross-section between the tangent to the
interface and the projection of the ray path. By geometry 6, has the same value at
every reflection.

= The skew-ray directions which are not included in either bound or refracting rays
belong to a third class of rays called tunneling rays.
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MERIDIONAL AND SKEW RAYS

Angles for describing reflection of a ray
incident at P on the interface of a step-
profile fiber. Relative to the normal PN, the
angle of incidence or reflection is «. Both
incident and reflected rays make angles 6,
with the axial direction PQ, and 64 in the
cross-section between the tangent PT and
the path projection, i.e. PR for the reflected
ray.

Figure 10: Ray reflected from a fiber [2].
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CHARACTERIZATION OF RAYS ON STEP-
PROFILE FIBERS

Table 1: Characterization of rays on step-profile fibers.

Rays classification m

Bound rays 0<6,<86,
Refracting rays 0<a<a,
[
Tunneling rays 0, <0, < >
[
Tunneling rays a. < a < >
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NUMERICAL APERTURE

Numerical aperture (NA) is a parameter which defines the maximal acceptance

angle of an optical system.
NA = ng sin(Opax) (21)

where n, is refractive index in the acceptance angle.

e)/

Figure 11:Illustration of numerical aperture in optical fiber.



NUMERICAL APERTURE

For coupling to guided mode of the optical fiber:
= TIR must occur inside the core and 6; > 6..

= ., = sin"1(n,/n,) is the critical angle of the core-cladding interface.

= Since sin §; = /1 — sin2 §; by Snell's Law: 1, sin(fax) = ny4/1 — sinZ ;.

= For the maximal acceptance angle 6; = 6.. By using sinf,. = n,/n,; we get the
numerical aperture as

NA = ng sin(Bay) = N/ 1 — sin2 6, = /n,2 — n,2 (22)
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NUMERICAL APERTURE

Figure 12:Illustration of light coupling into a step-index fiber.




NUMERICAL APERTURE

= Above this angle, the light propagates with partially internal reflection in the fiber
and the power will be lost after few reflections.

= Below this angle, the light propagates in the fiber with total internal reflection

without losses in the fiber.
)

Cc:re index n Guided\fray'

Figure 13: Light confinement through total internal reflection in step-index fibers [3].
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NUMERICAL APERTURE

Numerical aperture: general case
NA = /n,2 —n,2 > 6,

In case of a weak optical waveguide, A= (n; —n,)/n; < 1%. In this case, the
expression of numerical aperture can be simplified as:

Numerical aperture: weak waveguide
NA =nq,V2A

Typically, parameters of a single-mode fiber are NA =~ 0.1 — 0.2 and A= 0.2 — 1.
Therefore, 8, ~ sin"*(NA) =~ 5.7 — 11.5.
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NUMERICAL RPERTURE AND V-NUMBER

With the definition of the numerical aperture, the V-number and the cutoff wavelength of
a fiber can be expressed as a function of NA:

V_ZnaNA
2
1= A
¢ 2405

where d is the core diameter of the step-index fiber.

Example:

For a typical standard single-mode fiber with n; = 1.47,n, = 1.467 and d =9um - NA
= 0.0939

The maximum incident angle at the fiber input is 8, = sin"1(0.0939) = 5.38 and the cutoff
wavelengthis A, = 1.1 pum.
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NUMERICAL APERTURE

= Large NA (and A) is good in terms of the coupling and collection of light efficiency
but tends to become multimode.

= Large NA Unsuitable for high-speed communication because of a limitation such as
modal dispersion.

= Small NA fibers are therefore used for high-speed optical communication systems
since they improve the fiber's bandwidth.

= Plastic optical fibers (POFs) have high NA (0.4-0.5) and used for short-haul
communications (e.g. within an automobile). They are usually short due to the high
attenuation losses of plastic.

©



NUMERICAL APERTURE

= Low numerical aperture - small acceptance angle.
= High numerical aperture - big acceptance angle.

In commercial single mode fiber for telecommunication region (1.55 pm), the
numerical aperture in 0.13 and the acceptance angle is ~7.45 degrees. Therefore,
coupling to single-mode fiber is challenging (also small core of 9.8 pm).

[ 5
o\ | [ [ V.

) | L\

) \

Figure 14: 6, - fiber acceptance angle. Light can be coupled to an optical fiber only
when the incidence angle is smaller than the numerical aperture (if bigger, no TIR in
the core — loss to radiation at core-cladding interface).
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TYPES OF FIBERS

Optical fiber have two common configurations: step-index and graded-index.

Step-index fiber Graded-index fiber

Jacket

Cladding

Core

0

Radial distance

Radial distance

Figure 15: Cross section and refractive-index profile for step-index and graded-

index fibers [3].



STEP-INDEX FIBER

In step-index fiber, the core refractive index is constant.

Longer ray trace will have bigger optical path distance and short ray trace will
have smaller optical path distance.

As a result, this index profile causes intermodal dispersion.

- Vi L

fig

Core index n1 Gui@i

L

Figure 16: Light confinement through total internal reflection in step-index fibers [3].
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STEP-INDEX FIBER - TIME DELAY

The shortest path for 6 = 0 the length is D = L. The longest path for 6 = ¢. the length

. L
1SD = — i
sin ¢,

The time delay for the shortest and longest paths is defined as:

ny( L Ln,*
AT = : —L)|=—"A (23)
c \sin ¢, c N,
The estimate bit rate is obtained by the condition BAT < 1.Therefore:
n, C
BL < —%— (24)

n% A

Common communication fibers (A= 2 - 1073) can communicate data at a bit rate of 10
Mb/s over distances up to 10 km and may be suitable for some local-area networks.
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GRADED-INDEX FIBER

In graded-index fiber, the core refractive index decreases gradually from the

maximum value n,.
ni[l1-A(p/a)*], p<a

fo) = {nl[l —Al=n, , p=a (25)

where a is the core radius and a determines the index profile (a« = 2 - a parabolic-

index fiber). 7 7
A |

.
=7

]

Figure 17:Ray trajectories in a graded-index fiber [3].
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GRADED-INDEX FIBER

0

m

= Longer ray trace will pass in lower index and short ray trace in higher index.

= Therefore, longer ray trace will have in shorter optical path distance and short ray
trace will have in longer optical path distance.

= It is therefore possible for all rays to arrive together at the fiber output.

= As a result, this index profile reduces the intermodal dispersion.



GRADED-INDEX FIBER

The trajectory of a paraxial ray is obtained by:
d’p 1dn

dz?  ndp

where p the radial distance of the ray from the axis.

For p < aand a = 2, the solution is an equation of harmonic oscillator

!

p = po cos(pz) + %sin(pZ) (26)

where p = \/2A/a* and p, and p’, are the position and the direction of the input ray,
respectively.
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GRADED-INDEX FIBER

AT/L =n,A?/8c (27)

The limiting bit rate-distance product is:
BL < 8c/n,A? (28)

The BL of this fiber can be improved in 3 orders
of magnitude compared to step-index fiber and
can communicate data at a bit rate of 100 Mb/s
over distances up to 100 km.

Dispersion (ns/km)

1072

Figure

— 0.01

Ahodotaaal P
.
-t

BL [(Gb/s)—~km]

o

................... 100

Profile parameter, «

18: Variation of intermodal

dispersion AT/L with the profile
parameter a for a graded-index fiber [3].
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HW. : CHARACTERIZATION OF RAYS ON
GRADED-PROFILE FIBERS

Graded-profile fibers:

Explain graphically and analytically.
[1] Construction of ray paths

[2] Classify the meridional, skew and tunneling rays
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