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OPTICAL FIBER
In its simplest form, a step-index fiber 

consists of a cylindrical core surrounded by 

a cladding layer whose index is slightly 

lower than the core.

Both core and cladding use silica as the base 

material; the difference in the refractive 

indices is realized by doping the core, or the 

cladding, or both.

▪ Dopants such as GeO2 and P2O5 increase 

the refractive index of silica and are 

suitable for the core.

▪ Dopants such as B2O3 and fluorine 

decrease the refractive index of silica and 

are suitable for the cladding.
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REFLECTION AND REFRACTION

Assumptions:

▪ Plane wave propagation.

▪ Linear medium.

▪ Isotropic medium.

▪ Smooth planar optical interface.

Figure 1: Plane wave reflection and 

refraction at an optical interface [1].
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FRESNEL’S FIELD REFLECTIVITY

The reflectivity for optical field components parallel to the incident plane as:

𝜌∥ =
𝐸𝑟

∥

𝐸𝑖
∥

=
𝑛1 cos θ2 − 𝑛2 cos θ1

𝑛1 cos θ2 + 𝑛2 cos θ1
 

In order to eliminate 𝜃2, we can use Snell’s Law:

𝜌∥ =

𝑛1 1 −
𝑛1
𝑛2

sin 𝜃1

2

− 𝑛2 cos θ1

𝑛1 1 −
𝑛1
𝑛2

sin 𝜃1

2

+ 𝑛2 cos θ1

Similar analysis can also find the reflectivity for optical field components 
perpendicular to the incident plane as:
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FIELD REFLECTIVITY

Similar analysis can also find the reflectivity for optical field components 

perpendicular to the incident plane as:

𝜌⊥ =
𝐸𝑟

⊥

𝐸𝑖
⊥

=
𝑛1 cos θ1 − 𝑛2 cos θ2

𝑛1 cos θ1 + 𝑛2 cos θ2

𝜌⊥ =

𝑛1 cos θ1 − 𝑛2 1 −
𝑛1
𝑛2

sin θ1

2

𝑛1 cos θ1 + 𝑛2 1 −
𝑛1
𝑛2

sin θ1

2
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FIELD REFLECTIVITY

Power reflectivities for parallel and perpendicular field components are therefore:

𝑅∥ = 𝜌∥
2

=
𝐸𝑟

∥

𝐸𝑖
∥

2

and

𝑅⊥ = 𝜌⊥
2 =

𝐸𝑟
⊥

𝐸𝑖
⊥

2
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FRESNEL'S POWER TRANSMISSION 
COEFFICIENTS
According to energy conservation, the power transmission coefficients can be found 

as:

𝑇∥ =
𝐸𝑡

∥

𝐸𝑖
∥

2

= 1 − 𝜌∥
2

and

𝑇⊥ =
𝐸𝑡

⊥

𝐸𝑖
⊥

2

= 1 − 𝜌⊥
2

In practice, for an arbitrary incidence polarization state, the input field can always be 

decomposed into 𝐸∥ and 𝐸⊥ components. Each can be treated independently.
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SPECIAL CASE: NORMAL INCIDENCE

Normal incidence is when a light is launched perpendicular to the material 

interface. In this case, 𝜃1 = 𝜃2 = 0 and cos 𝜃1 = cos 𝜃2 = 1. The field reflectivity can be 

simplified as:

𝜌∥ = 𝜌⊥ =
𝑛1 − 𝑛2

𝑛1 + 𝑛2

▪ 𝒏𝟏 > 𝒏𝟐: there is no phase shift between incident and reflected field (the phase of 

both 𝜌∥ and 𝜌⊥ is zero)

▪ 𝒏𝟏 < 𝒏𝟐: there is a phase shift for both 𝜌∥ and 𝜌⊥ because they both become 

negative

With normal incidence, the power reflectivity is:

𝜌∥ = 𝜌⊥ =
𝑛1 − 𝑛2

𝑛1 + 𝑛2

2
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CRITICAL ANGLE

Critical angle is defined as an incident angle 𝜃1 at which total reflection happens at 

the interface. According to Fresnel Equations (2) and (4), total reflection (𝜌∥ = 𝜌⊥

= 1) occurs when
𝑛1

𝑛2
sin 𝜃1 = 1 or

𝜃1 = 𝜃𝑐 = sin−1
𝑛2

𝑛1

where 𝜃𝑐 is the critical angle.

▪ Obviously, the necessary condition to have a critical angle depends on the 

interface condition. First, if 𝑛1 < 𝑛2, there is not real solution for sin−1 Τ𝑛2 𝑛1 .

▪ It means that when a light beam goes from a low index material to a high index 

material, total reflection is not possible.
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CRITICAL ANGLE

▪ Second, if 𝑛1 > 𝑛2, a real solution can be found for 𝜃𝑐 = sin−1 Τ𝑛2 𝑛1 . Therefore, 

total reflection can only happen when a light beam launches from a high index 

material to a low index material.

▪ It is important to note that at a larger incidence angle 𝜃1 > 𝜃𝑐, 1 − Τ𝑛1 𝑛2 ∙ sin 𝜃1
2

< 0 and 1 − Τ𝑛1 𝑛2 ∙ sin 𝜃1
2 becomes imaginary.

Equations (2) and (4) show that if 1 − Τ𝑛1 𝑛2 ∙ sin 𝜃1
2 is imaginary, 𝜌∥

2
= 𝜌⊥

2 = 1. 

The important conclusion is that for all incidence angles satisfying 𝜃1 = 𝜃𝑐, total 

internal reflection will happen with 𝑅 = 1. 

(see the side effect of TIR which is Evanescent field in Lecture 1)
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CRITICAL ANGLE

Figure 2: Reflection at a planar interface between unbounded regions of refractive 

indices 𝑛co and 𝑛cl showing (a) total internal reflection and (b) partial reflection and 

refraction.

12



OPTICAL FIELD PHASE SHIFT BETWEEN THE 
INCIDENT AND THE REFLECTED BEAMS
▪ When 𝜃1 = 𝜃𝑐 (partial reflection and partial transmission), both 𝜌∥ and 𝜌⊥ are real 

and therefore there is no phase shift for the reflected wave at the interface.

▪ When total internal reflection happens (𝜃1 > 𝜃𝑐), 1 − Τ𝑛1 𝑛2 ∙ sin 𝜃1
2 is imaginary. 

Fresnel Equations (2) and (4) can be written as:

𝜌∥ =
𝑗𝑛1 1 − Τ𝑛1 𝑛2 ∙ sin 𝜃1

2 − 𝑛2 cos θ1

𝑗𝑛1 1 − Τ𝑛1 𝑛2 ∙ sin 𝜃1
2 + 𝑛2 cos θ1

𝜌⊥ =
𝑛1 cos θ1 − 𝑗𝑛2 1 − Τ𝑛1 𝑛2 ∙ sin θ1

2

𝑛1 cos θ1 + 𝑗𝑛2 1 − Τ𝑛1 𝑛2 ∙ sin θ1
2
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OPTICAL FIELD PHASE SHIFT BETWEEN THE 
INCIDENT AND THE REFLECTED BEAMS
Therefore, the phase shift for the parallel and the perpendicular electrical field 

components is:

∆Φ∥ = arg
𝐸𝑟

∥

𝐸𝑖
∥

= −2 tan−1
𝑛1

2 sin2 𝜃1 − 𝑛2
2

𝑛1 cos 𝜃1

∆Φ⊥ = arg
𝐸𝑟

⊥

𝐸𝑖
⊥

= −2 tan−1
𝑛1

2/𝑛2
2 ∙ sin2 𝜃1 − 1

𝑛2 cos 𝜃1

This optical phase shift happens at the optical interface, which has to be considered 

in optical waveguide design.
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BREWSTER ANGLE

Figure 3: Brewster angle for unpolarized ray.
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BREWSTER ANGLE - 𝜃𝐵

Consider a light beam launching onto an optical interface.

If the input electrical field is parallel to the incidence plane, there is a specific 

incidence angle 𝜃𝐵 at which the reflection is equal to zero.

𝜃𝐵 is defined as the Brewster angle.

Consider Fresnel Equation (2) for parallel field components. For 𝜌∥ = 0, the only 

solution is tan tan 𝜃1 =  𝑛2 = 𝑛1 and Brewster angle is defined as:

𝜃𝐵 = tan−1
𝑛2

𝑛1
 𝜃𝐵 + 𝜃𝑅 = 90
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BREWSTER ANGLE - 𝜃𝐵

Two important points we need to note:

▪ The Brewster angle is only valid for the polarization component which has the 

electrical field vector parallel to the incidence plane. For the perpendicular 

polarized component, no matter how we choose 𝜃1, total transmission will never 

happen.

▪ 𝜌∥ = 0 happens only at one angle 𝜃1 = 𝜃𝐵. This is very different from the critical 

angle where total reflection happens for all incidence angles within the range of

 𝜃𝑐 < 𝜃1 < 𝜋.

Brewster angle is often used to minimize the optical reflection and it can also be 

used to select the polarization.
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BREWSTER ANGLE - 𝜃𝐵

Figure 4: Field reflectivities and phase shifts vs. incidence angle. Optical interface is 

𝑛1 = 1.5 and 𝑛2 = 1.4 [1].
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RAY BOUNCING IN A FIBER

To confine and guide the lightwave signal within the fiber core, a total internal 

reflection is required at the core-cladding interface. This requires the refractive 

index of the core to be higher than the index of the cladding.

Figure 5: Index profiles of step-index [1].
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GEOMETRIC OPTICS ANALYSIS

Figure 6: Illustration of fiber propagation modes in geometric optics: (a) skew ray 

trace and (b) meridional ray trace [1].
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NOMENCLATURE

Nomenclature for describing circular fibers. Cartesian coordinates 𝑥 , 𝑦 , 𝑧  and 

cylindrical polar coordinates 𝜌, 𝜙, 𝑧 are oriented so that the z-axis lies along the 

fiber axis. A representative graded profile varies over the core and is uniform over 

the cladding, assumed unbounded.

Figure 7: Schematics of fiber circular cross-section [2].
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V-NUMBER

V-number, known as the waveguide parameter or waveguide frequency, is 

dimensionless parameter defined as

𝑉 =
2𝜋𝑎

𝜆
𝑛co

2 − 𝑛c𝑙
2

Where 𝑛co is the maximum value of 𝑛(𝜌), 𝑎 the core radius, and 𝜆 is the free-space 

wavelength of light.

The quantity 𝑛co
2 − 𝑛c𝑙

2 is often referred to as the numerical aperture (NA) of the 

fiber, while a related expression 𝑛co
2 − 𝑛c𝑙

2 is sometimes called the local numerical 

aperture.

𝑛 𝜌 = 𝑛co 0 ≤ 𝜌 < 𝑎
𝑛 𝜌 = 𝑛cl 𝑎 ≤ 𝜌 < ∞

𝑛co > 𝑛cl
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CONSTRUCTION OF RAY PATHS OF A STEP-
INDEX FIBER
Between reflections the ray follows a 

straight line and, on reflection from the 

interface, its direction is determined by 

Snell's laws. Thus, the incident ray, 

reflected ray and normal, or radial 

direction, lie in the same plane, and the 

angles of incidence and reflection 

relative to the normal are equal.

23

Figure 8: (a) the zig-zag path of a 

meridional ray and (b) the helical path of 

a skew ray, together with their projections 

onto the core cross-section [2].



MERIDIONAL RAYS

Meridional rays - rays which cross the fiber axis between reflections.

Note: Meridional rays lie in a plane of width 2𝜌 through the axis. Consequently, they 

have properties identical with rays of the corresponding planar waveguide.

We label meridional rays with the angle 𝜃𝑧 between the path and the 𝑧 direction. The 

ranges of 𝜃𝑧 for bound and refracting meridional rays are given by bound ray (Eq. 

18) and refracting ray (Eq. 19):

0 ≤ 𝜃𝑧 <
𝜋

2
− 𝜃𝑐

𝜋

2
− 𝜃𝑐 ≤ 𝜃𝑧 <

𝜋

2
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BOUND (EQ. 18) AND REFRACTING (EQ. 19) 
RAYS

𝑛co cos 𝜃𝑡 = 𝑛cl cos 𝜃𝑡

Figure 9: Zig-zag paths within the core of a step-profile planar waveguide for (a) 

bound rays and (b) refracting rays [2].
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SKEW RAYS

Skew rays - rays which never cross the fiber axis.

▪ Skew rays, follow a helical path, whose projection onto the cross-section is a 

regular polygon-not necessarily closed.

▪ To specify the trajectory of a skew ray in addition to the inclination 𝜃𝑧 to the axial 

direction, we need a second angle to indicate the skewness.

▪ We define 𝜃𝜙 to be the angle in the core cross-section between the tangent to the 

interface and the projection of the ray path. By geometry 𝜃𝜙 has the same value at 

every reflection.

▪ The skew-ray directions which are not included in either bound or refracting rays 

belong to a third class of rays called tunneling rays.
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MERIDIONAL AND SKEW RAYS

Angles for describing reflection of a ray 

incident at 𝑃 on the interface of a step-

profile fiber. Relative to the normal 𝑃𝑁, the 

angle of incidence or reflection is 𝛼. Both 

incident and reflected rays make angles 𝜃𝑧 

with the axial direction 𝑃𝑄, and 𝜃𝜙 in the 

cross-section between the tangent 𝑃𝑇 and 

the path projection, i.e. 𝑃𝑅 for the reflected 

ray.

27

Figure 10: Ray reflected from a fiber [2].



CHARACTERIZATION OF RAYS ON STEP-
PROFILE FIBERS
Table 1: Characterization of rays on step-profile fibers.

28

Rays classification Condition

Bound rays 0 ≤ 𝜃𝑧 < 𝜃𝑐

Refracting rays 0 ≤ 𝛼 < 𝛼𝑐

Tunneling rays 𝜃𝑐 ≤ 𝜃𝑧 ≤
𝜋

2

Tunneling rays 𝛼𝑐 ≤ 𝛼 <
𝜋

2



NUMERICAL APERTURE

Numerical aperture (NA) is a parameter which defines the maximal acceptance 

angle of an optical system.

NA = 𝑛0 sin 𝜃max

where 𝑛0 is refractive index in the acceptance angle.

Figure 11: Illustration of numerical aperture in optical fiber.
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NUMERICAL APERTURE

For coupling to guided mode of the optical fiber:

▪ TIR must occur inside the core and 𝜃𝑖 > 𝜃𝑐.

▪ 𝜃𝑐 = sin−1(𝑛2/𝑛1) is the critical angle of the core-cladding interface.

▪ Since sin 𝜃1 = 1 − sin2 𝜃𝑖 by Snell's Law: 𝑛0 sin 𝜃max = 𝑛1 1 − sin2 𝜃𝑖.

▪ For the maximal acceptance angle 𝜃𝑖 = 𝜃𝑐 . By using sin 𝜃𝑐 = 𝑛2/𝑛1  we get the 

numerical aperture as

𝑁𝐴 = 𝑛0 sin 𝜃max = 𝑛1 1 − sin2 𝜃𝑐 = 𝑛1
2 − 𝑛2

2
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NUMERICAL APERTURE

Figure 12: Illustration of light coupling into a step-index fiber.
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NUMERICAL APERTURE

▪ Above this angle, the light propagates with partially internal reflection in the fiber 

and the power will be lost after few reflections.

▪ Below this angle, the light propagates in the fiber with total internal reflection 

without losses in the fiber.

Figure 13: Light confinement through total internal reflection in step-index fibers [3].
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NUMERICAL APERTURE

Numerical aperture: general case

NA = 𝑛1
2 − 𝑛2

2 ≥ 𝜃𝑎

In case of a weak optical waveguide, ∆= Τ(𝑛1 − 𝑛2) 𝑛1 ≪ 1% . In this case, the 

expression of numerical aperture can be simplified as:

Numerical aperture: weak waveguide

NA = 𝑛1 2∆

Typically, parameters of a single-mode fiber are NA ≈ 0.1 − 0.2 and ∆≈ 0.2 − 1. 

Therefore, 𝜃𝑎 ≈ sin−1 NA ≈ 5.7 − 11.5.
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NUMERICAL APERTURE AND V-NUMBER

With the definition of the numerical aperture, the V-number and the cutoff wavelength of 

a fiber can be expressed as a function of NA:

𝑉 =
2𝜋𝑎

𝜆
NA

𝜆𝑐 =
𝜋𝑑

2.405
NA

where 𝑑 is the core diameter of the step-index fiber.

Example: 

For a typical standard single-mode fiber with 𝑛1 = 1.47, 𝑛2 = 1.467 and 𝑑 = 9 μm  -  𝑁𝐴
= 0.0939

The maximum incident angle at the fiber input is 𝜃𝑎 = sin−1 0.0939 = 5.38 and the cutoff 

wavelength is 𝜆𝑐 = 1.1 μm.
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NUMERICAL APERTURE

▪ Large NA (and ∆) is good in terms of the coupling and collection of light efficiency 

but tends to become multimode.

▪ Large NA Unsuitable for high-speed communication because of a limitation such as 

modal dispersion.

▪ Small NA fibers are therefore used for high-speed optical communication systems 

since they improve the fiber's bandwidth.

▪ Plastic optical fibers (POFs) have high NA (0.4-0.5) and used for short-haul 

communications (e.g. within an automobile). They are usually short due to the high 

attenuation losses of plastic.
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NUMERICAL APERTURE

▪ Low numerical aperture - small acceptance angle.

▪ High numerical aperture - big acceptance angle.

In commercial single mode fiber for telecommunication region (1.55 µm), the 

numerical aperture in 0.13 and the acceptance angle is ~7.45 degrees. Therefore, 

coupling to single-mode fiber is challenging (also small core of 9.8 µm).

Figure 14: 𝜃𝑎 - fiber acceptance angle. Light can be coupled to an optical fiber only 

when the incidence angle is smaller than the numerical aperture (if bigger, no TIR in 

the core → loss to radiation at core-cladding interface).
36



TYPES OF FIBERS

Optical fiber have two common configurations: step-index and graded-index.

Figure 15: Cross section and refractive-index profile for step-index and graded-

index fibers [3].
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STEP-INDEX FIBER

▪ In step-index fiber, the core refractive index is constant.

▪ Longer ray trace will have bigger optical path distance and short ray trace will 
have smaller optical path distance.

▪ As a result, this index profile causes intermodal dispersion.

Figure 16: Light confinement through total internal reflection in step-index fibers [3].
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STEP-INDEX FIBER - TIME DELAY

The shortest path for 𝜃 = 0 the length is 𝐷 = 𝐿. The longest path for 𝜃 = 𝜙𝑐 the length 

is 𝐷 =
𝐿

sin 𝜙𝑐
.

The time delay for the shortest and longest paths is defined as:

∆𝑇 =
𝑛1

𝑐

𝐿

sin 𝜙𝑐
− 𝐿 =

𝐿

𝑐

𝑛1
2

𝑛2
∆

The estimate bit rate is obtained by the condition 𝐵∆𝑇 < 1. Therefore:

𝐵𝐿 <
𝑛2

𝑛1
2

𝑐

∆

Common communication fibers (∆= 2 ∙ 10−3) can communicate data at a bit rate of 10 

Mb/s over distances up to 10 km and may be suitable for some local-area networks.
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GRADED-INDEX FIBER

In graded-index fiber, the core refractive index decreases gradually from the 

maximum value 𝑛1.

𝑓 𝑥 = ቊ
𝑛1 1 − ∆ Τ𝜌 𝑎 𝛼 , 𝜌 < 𝑎

𝑛1 1 − ∆ = 𝑛2 , 𝜌 ≥ 𝑎

where 𝑎 is the core radius and 𝛼 determines the index profile (𝛼 = 2 - a parabolic-

index fiber).

Figure 17: Ray trajectories in a graded-index fiber [3].
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GRADED-INDEX FIBER

▪ Longer ray trace will pass in lower index and short ray trace in higher index.

▪ Therefore, longer ray trace will have in shorter optical path distance and short ray 

trace will have in longer optical path distance.

▪ It is therefore possible for all rays to arrive together at the fiber output.

▪ As a result, this index profile reduces the intermodal dispersion.
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GRADED-INDEX FIBER

The trajectory of a paraxial ray is obtained by:

𝑑2𝜌

𝑑𝑧2
=

1

𝑛

𝑑𝑛

𝑑𝜌

where 𝜌 the radial distance of the ray from the axis.

For 𝜌 < 𝑎 and   𝛼 = 2, the solution is an equation of harmonic oscillator

𝜌 = 𝜌0 cos 𝑝𝑧 +
𝜌′

0

𝑝
sin(𝑝𝑧)

where 𝑝 = Τ2∆ 𝑎2 and 𝜌0 and 𝜌′
0 are the position and the direction of the input ray, 

respectively.
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GRADED-INDEX FIBER

∆ Τ𝑇 𝐿 = Τ𝑛1∆2 8𝑐

The limiting bit rate-distance product is:

𝐵𝐿 < Τ8𝑐 𝑛1∆2

The BL of this fiber can be improved in 3 orders 

of magnitude compared to step-index fiber and 

can communicate data at a bit rate of 100 Mb/s 

over distances up to 100 km.
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Figure 18: Variation of intermodal 

dispersion ∆ Τ𝑇 𝐿  with the profile 

parameter 𝛼 for a graded-index fiber [3].
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H.W. : CHARACTERIZATION OF RAYS ON 
GRADED-PROFILE FIBERS
Graded-profile fibers:

Explain graphically and analytically.

[1] Construction of ray paths

[2] Classify the meridional, skew and tunneling rays
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