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WHY TO FILTER? WINDOWS AND WINDOWING

= In many DSP applications, very long signal samples must be processed.

= To practically manage the data, localized processing is applied to a subset of
samples.

= This subset is often generated through the process of windowing.

= A straightforward or naive approach is to window by simply ignoring all points
before a certain time instant and after a certain time instant.

= This amounts to what we call a rectangular window.

Filtering:
Extracting What We Want from What We Have




FILTERING EXAMPLE:
IDENTIFICATION OF CONTOQURS
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ANALOG FILTERING:

EXAMPLE
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WHY TO FILTER? WINDOWS AND WINDOWING

= For instance, sine signal in finite interval of 27
= DFT of that appears as two delta functions

= However, if the sine signal has been truncated in interval [0:27r], in the DFT of that
signal appears ‘spectral leakage’ non1vpao N7 that can be removed via
windowing (filtering)

x(t) [0:27] — DFT x(t) @ DFT
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WINDOWS IN TIME: EXAMPLES
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WINDOWS IN FREQUENCY: EXAMPLES =~ ~
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WINDOWS IN TIME VS FREQUENCY: EXAMPLES

= PSD of Rectangular window
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ENGINEERING CONNECTION =

= Signal/Image processing: speech, image and video
processing. | = BESE

: : filters are used to alter the colors of light L ‘
by blocking certain ranges of wavelengths (see Lecture 1). ' i

= Chemistry: membranes are used to block impurities while
letting other materials pass through.




CRITERIA TO COMPARE BETWEEN WINDOWS I
EQUIVALENT NOISE BANDWIDTH (ENBW)
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CRITERIA TO COMPARE BETWEEN WINDOWS 2:
PROCESSING GAIN (PG)
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CRITERIA TO COMPARE BETWEEN WINDOWS 3J:
OVERLAP CORRELATION
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CRITERIA TO COMPARE BETWEEN WINDOWS 4:
SCALLOPING LOSS
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CRITERIA TO COMPARE BETWEEN WINDOWS 5:

Magnitude of the side lobes as compared to the main lobe

SIDE LOBES
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CRITERIA TO COMPARE BETWEEN WINDOWS 6:
ASYMPTOTIC VALUE OF MAIN LOBE AMPLITUDE
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FILTERS: CLASSIFICATION G

= There are two kinds of filters: . . .
igure 8.2 Specification of a low-pass filter.

= ]) Frequency selective (see Proakis and Monolakis Ch. 10)- such as High Pass
Filter (HPF), Low Pass Filter (LPF), Notch filters, Comb filters. — will be studied in

DSP course. II) Specific filters — for specific implementation < A
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Gibbs phenomenon

B ————,

/

INTR/NPY)

e
oo

FILTERS: DEFINITION
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RELATION BETWEEN (BEL AND
DECIBEL

= The decibel (symbol: @ IS a relative unit of
measurement equal to one tenth of a bel (B). The bel
was named in honor of Alexander Graham Bell.

= Alexander Graham Bell was a Scottish-born inventor,
scientist and engineer who is credited with patenting the
first practical telephone, groundbreaking work in optical
telecommunications.

= Bell Laboratories (9 Nobel prizes) was, and is, regarded
by many as the premier research facility of its type,
developing a wide range of revolutionary technologies,
iIncluding radio astronomy, the transistor,
the laser, information theory, the operating system Unix,
the programming languages C and C++, solar cells,
the charge-coupled device (CCD), and many other
optical, wireless, and wired communications
technologies and systems

Born

Alexander Graham Bell
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Alexander Bell

March 3, 1847
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FILTERS:
DESIGN

= Design filters are studied in:
= [) Frequency selective filters: DSP course

= [I) Specific filters — for specific implementation.
For instance: filtering the noise from a noisy
speech — studied in statistical signal processing of
adaptive filter >1>09TN 110D ,PVODXVLVLO MMN TIDY)
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> INPLEMENTATION CONSIDERATIONS

‘ % = Let investigate the ideal filter of Low Pass
Filter (LPF) kind

\ ; 1 16| <6 :
]6 — i .

H(e ) {O 0,2 |0| <m from this:

:_J Impulse response 0. sin(6.n)

T T — h[n] =
WG LN [ ] T HCTL

an we implement such a filter? No, since it is
not causal. w115 112 XD ONDO N

e

Causality - is the first condition to implement

a hilter.

In case of LPF, one cannot implement it since @
the response is not causal.




H7(0) = H,(0) + jH; ()
= |Hf(9)|ej¢(9)

CRUSALITY ... e e

Y 1) For h[n] of finite ené*‘ g‘gyyr and casual the following theorem must be valid:

Paley-Wlener Theorem (1934) f IIn|H(e’9)]| d < oo @

This condition is not valid if oo, |H(e/%)| = 0 but |H| # o

because finite energy is given

Analysis of LPF is valid for ideal filters such as BPF, HPF. Since those filters also
have rectangular window function in frequency

¢" 2/2 Causality and the relation between H to H}s Hg, .. Q“L H (6) ~ sin(y)
Filter construction without conditions on H can allow to decide upon |H]|, <H |H; @)
as we wish and so to define H;, H; as we wish — — H f(e) = cos(y)
, — = |H/(6)]
For h[n] < H(e’?) we can show the even part of the time response: HL ()
E — . . = tan(y)

bon] = holn] + holnl; heln] = 3[AIn] +h{=n] J; holn] = 5 [k[n] = h{-n] ] 1H/©)

e @



CAUSALITY AND THE RELATION BETWEEN H AND H, H,

For h[n] <> H(e’?) we can show the even part of time response:
1
he(n) = 3 [h[n] + h{—n]]

In general, one cannot reconstruct h[n] from h,[n]. Can we reconstruct if h|n]| is casual? Yes,
because h[n| and h[—n] overlap only in n = 0.
" hin| = 2h,[n]uln] — h[0]6[n] n =0 ->

Pl
= ' 'Y TN-TN W7 D7 |27 |

. : h[n]
= h,[n] > h[n] h|n] is completely determined from h,[n] A
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= |2 "> TN-TN Wi 7271 DTFT nAnnn NKR7I he(n) <— Hg(w)
Hp(e/?))¢>(H (e’9) H(w) = Hi(@) + jH@) — 0 F g

e/?) is completely determined if we know Hp (e’? ). Equivalently, the magnitude

and phase responses of a casual filter are interdependent and hence cannot be specifie@
independently.



FILTERS
IMPLEMENTATION:

FIR AND IIR

FIR Definition:
1o o(n§ mporta
Finite Impulse Response (FIR) filter- is a filter

with finite impulse response which fulfill the
following equation: ,_, ~ 552

b, is vector of filter’s coefficients also in impulse
response:

Note: Finitg Impulse l}lesponse (FIR) is also
named Méving Iﬁféfége (MA): average is due to
the weighting of x. Moving because of the
convolution window. (x (1(+ e KL ~1i2tY
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FILTERS
IMPLEMENTATION:

FIR AND IIR

R et e D)
d

~

IIR Definition: y[n]=x[n-1]+ay[n-1]

. 0080 ) (< ?K’C ~ LS . .
Infinife Impulse Response (IIR) filter- is a
filter in which the output is dependent also on
the output in past and fulfill the following:

no')7
L-1 d M-1
4
LA vl =) (bl — 1] - y[n —m]
\” 1=0 7 .c
P'QI ya &

a.,, b; filter’s coefficients

One can present also the infinite impulse
response due to the feedback of y.

Infinite Impulse Response (IIR) is also
named Auto-Regressive Moving Average @
(ARMA) - self-feedback moving averaging



FREQUENCY RESPONSE OF FILTERS —
VIA DTIT

DTFT transform — multiplication in e /" and summation on n

We will obtain:

Y (el?) _2 bX(eJe)e 19162 a Y(eje)ejem
/ L

M-1
Y(e’?) 1@2 a,e1om =X(ej9)z b;e 79!
m=1 ] [=0

And the frequency response is:

H(e?) =

Y(e/®) Y-l beTO!

X(e/?) YM=L q,e-jom

while ay = 1



SURVEY: A FILTER PROPERTIES

R
Which one of the following properties is fulfilled

by each filter defined by
y[n]=sum m=(-1000) to 1000. b[m]x[n-m], b is
finite

= EasyPolls:

a~v f7e
" \r_)f o,
li ([« = .
O BIBO stability | e () > /ni,_')
+ O causality <\ ’\.,V " (WD T ”
o ~°>7 <
\/O time-invariant /‘:‘(7 [ &&C“ﬁ e PIRY e . N
r C H H . ~ N \ o
?'—£D| (e O inversible V2! o

\/O more than one property is correct

results = vote @
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EXRMPLE FIR

= Is it stable? Yes, since h|n] is right and

>

the poles are inside the unite circle.

Is it always stable? Yes. The poles

are always at z = 0. N g

Advantage: FIR is always stable: poles inside the unit circle

If the system is righteous M no>yn

Disadvantage: poles are always atz = 0

this limits the design of the filter
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A zero on the unit circle
causes |H{(w)| =0 and
w = Xzi. In contrast, a
pole on the unit circle
results in |H(w)| = oo at
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Figure 5.2.2

= Re(z)
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Figure 10.2.8

Lowpass FIR filter designed
with rectangular window
(M = 61).

Figure 10.2.9

Lowpass FIR filter designed
with Hamming window

(M = 61).

Figure 10.2.10

Lowpass FIR filter designed
with Blackman window

(M =61).
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LOWPASS FILTER DESIGN
WITH R WINDOW

To alleviate the presence of large oscillations in both the passband and the stop-
band, we should use a window function that contains a taper and decays toward zero
gradually, instead of abruptly, as it occurs in a rectangular window. Figures 10.2.8
through 10.2.11 illustrate the frequency response of the resulting filter when some



= [s it stable? Yes, since h|n] is right and
the poles are inside the unite circle.
Is it always stable? Yes. The poles

are always at z = 0.

Advantage: FIR is always stable

Disadvantage: poles are alwaysatz =0

this limits the design of the filter




EXAMPLE: IIR et

> ~7

* yIn] = x[n]
— —

Z transforme Y (z2) = X(2) —Z71X(2) + iZ_ZY(Z) e

—x[n — 1] +iy[n—2]

Y@ 327 = XD - 271

— 7
N -1 2_ _1)
é- H(Z) % - 1Z =2 i — Z(1 1)1

-
’

02T

. \
(o7 2 Isitstable? Yes
" Zeros and Poles can be in each plm

©



Advantage: flexibility in choosing poles

Disadvantage: can be unstable

31



COMPARISON: FIR V3. IIR

ev

S
NY

Property FIR IIR
I Computational X V d
complexity ’

ANY D M , C
IT BIBO stability Always stable,\v Not alvvays sfa/\b‘fe ?
III Linear Phase, delay = V\/ Not linear, can be
no distortion approximated
Ivif Error accumulation Vv Recursive calculation,

¢z e 003N & X
V Integrationin <>® (¢
ol . :

optimization problems ol Cost function Cost function nor-—
(noise filtering, needed convex, V convex,
response) <9\ _ J"Q‘ﬂ VRS —




