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INTRODUCTION

The response of any dielectric material to light such as silica glass of optical fibers, becomes nonlinear.
Even though silica is intrinsically not a highly nonlinear material, the waveguide geometry that confines
light to a small cross section over long fiber lengths makes nonlinear effects quite important in the design
of modern lightwave systems. The nonlinear phenomena that are most relevant for fiber-optic
communications are:

1 Nonlinear phase modulation

1.1 Self-phase modulation

1.2 Cross-phase modulation

2 Four-wave mixing

3 Solitons

4 Stimulated light scattering

4.1 Stimulated Brillouin scattering

4.2 Stimulated Raman scattering
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THE NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrodinger equation (NSE) is of particular importance in the
description of nonlinear effects in optical fibers.

The nonlinear term of the NSE leads to a spectral broadening of the pulses which can
interact with the dispersion in different ways.

The nonlinear wave equation is:
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RELATION BETWEEN ELECTRIC POLARIZATION
P AND ELECTRIC FIELD VECTOR E

Relation between P and E
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P(r,t) =g, j y(r,t —tHE(r, t")dt

— 00

where y is the linear susceptibility which is in general a second-rank tensor but a
scalar for an isotropic medium such as silica glass.

Dimensionless proportionality constant, electric susceptibility y, indicates the
degree of polarization of a dielectric material in response to an applied electric
field. The greater the electric susceptibility y, the greater the ability of a material to
polarize in response to the field, and thereby reduce the total electric field E inside
the material (and store energy). It is in this way that the electric susceptibility y in
fluences the electric permittivity ¢ of the material.




WAVE EQUATION

From Lecture 3:
VXVXE =550 "Hoe
where ¢ = \/lp&g
VXxVxXE=V(VXE)—V2E = —-V?E 3)




THE NONLINEAR SCHRODINGER EQUATION

For the simplification, few assumptions will be made:
= The waveguide is a single mode.

= The material is perfectly transparent and the wavelength is far away from any material
resonances.

= All scattering effects in the waveguide are neglected.

= The amplitude of the considered wave packet changes very slowly with respect to its
carrier.

= The 1{ield strength of the applied field is, compared to the inner atomic field, relatively
small.

= The fields are linearly polarized in the same direction and the polarization status
remains the same during the propagation.

= The nonlinearity has no influence on the field components perpendicular to the
propagation direction.




THE NONLINEAR SCHRODINGER EQUATION

Under this simplifications, the quasi-monochromatic propagating wave is (c.c. is
complex conjugate) propagating in z direction:

| N .
E = 5 |E(r)e/*z=ot 4 ¢ c.] (4)

The slowly varying envelope, E(r), consists of two parts: one in the propagation
direction (longitudinal, A(z)) and perpendicular to the propagation direction
(transverse, F(r, ¢)) as E(r) = F(r, 9)A(2)

In fiber, the intensity decreasing quadratically with an increase of the radius r and

~12 .
defined as: [ = %eo cn|E | and the power 1s

P=U1-rdrdg0 ©




THE NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrodinger equation (NSE) can be represented as:

B _ o ke 2B
I 57 = 7Y 2 T2 (6)

The first term on the right side describes the influence of the nonlinearity on the
pulse, whereas the second term can be addressed to the linear effect of dispersion
in the waveguide.

In case that the absorption in the material is included

0B @ |B|23+k2023
J o, TP =7V 2 9T2 (7)

where B is the amplitude envelope, T is a moving frame and «a is the attenuation
constant.
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DISPERSION AND NONLINEAR LENGTH

Assume the time scale is normalized to the pulse width (t = T/7,). The normalized
amplitude (A4) is defined as:

B(z,7) = VPA(z, 1) (8)

The NSE becomes
|ky| 0%A

2742 072 9)

A
j5= = —yPIA?A + sgn(i;)

where sgn = +1 describes the sign of the dispersion parameter k,.

The dispersion length can be written as
To®  To’2mC

kol D122

where D is the dispersion parameter.
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DISPERSION AND NONLINEAR LENGTH

The nonlinear length is

The NSE becomes

(11)

(12)



DISPERSION AND NONLINEAR LENGTH

= For a large Nonlinear Length - the fiber
behaves linearly.

= It happens when the nonlinearity or the power
is small.

= For a large dispersion length — the broadening
of the pulses can be neglected.

= It happens when the initial pulse is large or the
dispersion is small.

Pulse Width (ps)
10 100
| " n " 1 1 P |

1000 4+—— ~ 1000

Independent
Regime

100 4 L 100

Soliton

L, (km)

Dispersive Nonlinear E
Regime Regime P
10 5 =10
1 Dispersive r
1 + Nonlinear i
1 Regime I
1 ————rry — - 1
0.01 0.1 1
input Power (W)

Figure 1: Nonlinear and dispersion
length for a standard single mode fiber

at a wavelength of 1.55 ym [1]. @



FIBER NONLINEARITIES

The response of any dielectric to light becomes nonlinear for intense
electromagnetic fields, and optical fibers are no exception. On a fundamental level,
the origin of nonlinear response is related to the anharmonic motion of bound
electrons under the influence of an applied field. As a result, the total polarization P
induced by electric dipoles is not linear in the electric field E, but satisfies the more
general relation

P=¢,(yVE+ y@EE + y®EEE + ) =P + P& + PV + ...
where ¢, is the vacuum permittivity and y ¥’ is jt order susceptibility.

- As SiO, is a symmetric molecule, y(?) vanishes for silica glasses.

- The electric-quadrupole and magnetic-dipole moments can generate weak
second-order nonlinear effects.
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FIBER NONLINEARITIES

The lowest-order nonlinear effects in optical fibers originate from the third-order
susceptibility y(®), which is responsible for phenomena such as third-harmonic
generation, four-wave mixing, and nonlinear refraction. Most of the nonlinear effects
in optical fibers therefore originate from nonlinear refraction, a phenomenon
referring to the intensity dependence of the refractive index.

il =ng +nyl =ny + ny|E|? (13)

where 711, is the nonlinear-index coefficient defined as

_ 3 3
ny; = % ER{)(J(cx)xx
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SELF- AND CROSS-PHASE MCDULATION

Self-phase modulation (SPM) and cross-phase modulation (XPM or CPM) are two of
the most important nonlinear effects in optical telecommunications. Both effects lead
to a phase alteration of the pulses and are frequently called carrier-induced phase
modulation (CIP). The alteration of the phase leads to a change of the pulse
spectrum.

= In the case of SPM, the pulse changes its spectrum due to its own intensity; it will be
broadened. The broadening causes, of course, a degradation of system
performance

= The XPM is similar to the SPM but the origin of the spectral broadening of the
pulses are other pulses propagating at the same time in the waveguide; they will
mutually influence each other.
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SELF-PHASE MODULATION

In the case of SPM, the pulse changes its spectrum due to its own intensity; it will be
broadened. Together with the dispersion of the material, this spectral broadening
can lead to an alteration of the temporal width of the pulse.

0B
3 = jyPB (14)
The envelope of the wave (B) after distance z is:
B(z) = B(0) exp(jyPz) (15)

Due to Eq. (15), the slowly varying amplitude B(z) changes its phase during the
propagation in the waveguide and the phase alteration is proportional to the
propagation distance z. The total transmission in the fiber:

1,.. .
E(z,t) = 5 |E(r,0)e/yPHklz=0t) 4 ¢ ¢ ] (16)
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SELF-PHASE MODULATION

USing I = P/Aeff and Y = kOnZ/Aeffs the Phase Input Pulse
of the wave can be represented as:
CI)(Z, t) = (no + nzl)koz — wt (17)

Electric Field

The pulse modulates, due to the intensity-
dependent refractive index, its own phase
with its intensity. Hence, the name self-phase
modulation is wused to describe this
phenomenon.

Time ——=

Phase

Phase

Figure 2: Electric field of a Gaussian pulse
at the fiber input (top) and phase shift due

to SPM (bottom) [1].
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SELF-PHASE MODULATION

The temporal derivation of the phase corresponds to the frequency of the wave.
Hence, the frequency is:

() = dd(z,t) " ol .
w\Z) = ot = Wy Ny Ko atZ ( )
Therefore, it will decrease if the pulse intensity increases, reach the original

frequency in the pulse maximum, and will increase for the decreasing wing.
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Due to SPM, the leading edge is stretched. The peak maintains its original frequency
and the tailing edge is compressed.

Figure 3: Electric field of a pulse at the fiber input and output. Due to the SPM in the
fiber the frequency of the pulse is changed. Note that the pulse here propagates

from the left to the right [1].
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SPM'S IMPACT ON COMMUNICATION
SYSTEMS

The nonlinear part of the phase from Eq. (17) is
Oyp, = nylkoz (19)

using y = kgn,/A.fwWe get the phase change as function of the length. Considering
the influence of attenuation
DN = YPLest (20)

1—exp(—az . .
p(az) and « is units of km-!.

where Ly =
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SPM'S IMPACT ON COMMUNICATION
SYSTEMS

= For an input power of 1 W, one yields a phase shift of 7 /2 after a distance of ~1.2 km
in a standard single mode fiber (nonlinearity coefficient y = 1.3 W lkm™1,
attenuation a = 0.2 dB/km).

= For the same phase shift, an effective length of 1200 km is required in systems with
an input power of 1 mW.

= This is much more than the limiting value of the effective length in single mode
fibers (~22 km).

= If no optical amplifiers are present in the system it follows a phase shift of at most
~0.03 rad for a signal power of 1 mW.

=)



SPM'S IMPACT ON COMMUNICATION

SYSTEMS

]
T ~
= If optical amplifiers are present in the system, o ,//
the relations are completely different. £
= The effective length depends on the number § 15 A
of amplifiers. E e
£ 10 //
= If the system is long enough small input = N | v
powers can cause a strong phase shift. N
> 0 20 40 60 80 100

Input Power (mW)

Figure 4: Maximum phase shift for an
unamplified system versus input power.
(Attenuation constant «a = 0.2 dB/km ,
nonlinearity coefficient y = 1.3 W™ 1km™!

[1]. @



SPM'S IMPACT ON COMMUNICATION

SYSTEMS

An alteration of the phase causes an alteration of the pulse frequency as well. The
spectral broadening of the pulse at the fiber output is

— v ee— (21)

AB =

The spectral broadening depends not only on the effective length but on the
temporal alteration of the power of the input pulse as well. Short pulses are much
more affected than long pulses due to SPM.
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SPM'S IMPACT ON COMMUNICATION

SYSTEMS
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Figure 5: Spectral broadening of a pulse with temporal durations of 25 ps after a

propagation distance of 2 and 22 km (effective length) in a standard single mode
fiber [1].
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SPM'S IMPACT ON COMMUNICATION
SYSTEMS
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Figure 6: Spectral broadening of two pulses with temporal durations of 25 and 100 ps.
The propagation distance in a standard single mode fiber is 22 km (effective length)
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CROSS-PHASE MODULATION

Cross-phase modulation (XPM, or sometimes, CPM) is similar to SPM, but contrary to
SPM, different channels can interact with each other via the alteration of the intensity
dependent refractive index.

B B|2B

For simplicity, only two channels propagating at the same time in the fiber will be

considered. The entire field consists of two parts
B = B exp|j(k1z — w1t)]| — By explj(k2z — wyt)] (23)

therefore
jY|B|*B = jyBB*B (24)

where B” is the complex conjugate of B.
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CROSS-PHASE MODULATION

These terms can be separated by the arguments of the exponential functions:
0B , e Ao
—= = J¥[(UBnl|? + 2|Bu|?) By + By By "€/ 47000 (25)

wn, . . . — .
where y = ” 2 is the nonlinearity constant and @ is the mean frequency.
eff

Assuming that the fiber shows dispersion and therefore, the phase matching
condition is not fulfilled and the generation of mixing frequencies is suppressed.

0B _
aZm = jy[(IBn|? + 2|B,|*)By] (26)
Assuming that the brackets is constant for a distance z and m = 1.
B1(z) = B1(2) exp|jy (P, + 2P;)Z] (27)
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CROSS-PHASE MODULATION

Hence, the phase of the first wave is altered due to its own power - this is the SPM
effect - but at the same time the power of the other wave has an influence on the

phase of wave 1 as well. The influence is twice that of SPM.

The total refractive index in the fiber is:
nges = Ny + ’n211 + 2712]2 (28)

The second wave alters the refractive index experienced by the other wave via its
intensity and hence, changes the phase of the other wave. The phase of the wave is:
n;
eff

P =

(Pl + 2P2) + Ny k01Z — (1)1t (29)
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CROSS-PHASE MODULATION

The nonlinear part caused by XPM can be written as:

n;
Dixpm = 2A Pykog1z = 2y P,z (30)
eff
The frequency change at the output of a fiber with length L is:
dP
ABypym = ZVLa_tZ (31)

When the attenuation is considered L = L.¢. The XPM spectral broadening is twice
compared to SPM spectral broadening (compare to Eq. (21)).
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XPM AND SPM EFFECTS
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Figure 7: Spectral broadening of a pulse due to SPM and XPM in a standard single

mode fiber after a propagation distance of 22 km (effective length). Both effects are
considered independently [1].
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SPM AND XPM

A common method for studying the impact of SPM and XPM uses a numerical
approach. The equation

0B jif, 0°B 03B
+]'82 n B3 —0
dz' 2 9t'? 6 jt’'3

(B, is the GVD coefficient and [; is related to the dispersion slope S) can be
generalized to include the SPM and XPM effects by adding a nonlinear term.

(32)

The resulting equation is known as the nonlinear Schrodinger equation and has the
form:
0B jB,0°B a
0z * 2 0tz 2
where we neglected the third-order dispersion and added the term containing to
account for fiber losses.

B + jy|B|*B (33)
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XPM'S IMPACT ON COMI

= On the other hand, modern WDM systems consist of a huge number of channels at
different carrier wavelengths.

[UNICATION

= Each wavelength delivers a contribution to the nonlinear refractive index that acts back
on the distinct channels.

= Hence, all channels can influence each other via their intensities.

The equations for M channels are

M
0By |
—=jy| 1B +2 ) 1Bl | By
=2
(34
0B M-1
M .
== jy|1Bul? +2 ) IBil* | By
i=1
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XPM'S IMPACT ON COMMUNICATION

SYSTEMS

If all channels coincide temporally, the total refractive index in the first channel of a
WDM system with M channels experiences is

M
Nges = No + NIy + 2 2 n,l; (35)
i=2
and the phase of wave 1 is
M
n;

o, = Pi+2 ) P |+nglkoz— wt (36)

Aetf L

= The influence of XPM is much more important than the influence of SPM in WDM
systems.

= However, XPM is the most important factor that determines the transmission
capacity of optical fibers.

©



XPM'S IMPACT ON COMI

= The influence of XPM should be considered in phase-modulated systems in
particular because an arbitrary phase alteration leads directly to a deterioration of
the signal to noise ratio.

[UNICATION

= If the systems are intensity modulated, the XPM has no influence on the system
performance if the dispersion is neglected because only a phase modulation takes
place.

=)



XPM'S IMPACT ON COMI

The red pulse was injected into the fiber 100 ps
before the blue one. For convenience, the influence of
dispersion and nonlinearity to the pulse width should
be neglected.

In a standard single mode fiber, the propagation of
pulses with a carrier wavelength above 1.3 pm is
determined by the anomalous dispersion. The GVD
parameter, and therefore the group velocity,
decreases with increasing wavelength. Hence, the
blue pulse injected into the fiber after the red one
moves faster. After a distance of 3.5 km, both pulses
overlap halfway and overlap completely after 5.9 km.
If the pulses propagate further, they walk apart and
after a distance of 12 km, they are again completely

one.

[UNICATION
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Gaussian pulses with a temporal width of 41.6 ps
separated. But now the blue pulse is in front of the red (FWHM) and a carrier wavelength of 1.577 and
1.578 ym for different propagation distances in a
standard single mode fiber D = 17 ps/(nm - km) [1]
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XPM'S IMPACT ON COMI

If the interaction length between the pulses is defined as the distance between the beginning and
the end of the overlap at half the maximum power, then the time for the interaction is 27gywyMm, With
Trwam as the FWHM pulse width. The interaction length is

L = 2TpwWHM
L™ paa

where D is the dispersion parameter and A/ is the difference between the carrier wavelengths of
the pulses.

[UNICATION

For example, two adjacent pulses of the C-band (channel spacing 50 GHz, A, = 1544.92 nm, A,
= 1544.53 nm) with a FWHM width of 25 ps:

= A standard single mode fiber

S
pD=17 —2 L L, =754km
nm - km
= A nonzero dispersion-shifted fiber
S
p=2—"__ L I —641km
nm - km
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FOUR-WAVE MIXING (FWM)

Four-wave-mixing (FWM), or sometimes four- ey i Wity R L

photon-mixing (FPM), describes a nonlinear :\/\/\/\/\/\/\ . hfa,,\/W
optical effect at which four waves or photons . e . :
interact with each other due to the third order o 7} : '
nonlinearity of the material.

As a result, new waves with sum and ' | *
difference frequencies are generated during ; | |nf, !

the propagation in the waveguide. M |

Ground State \

Figure 8: Energy diagram of Four-Wave

Mixing (FWM) [1].
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FOUR-WAVE MIXING (FWNM)

If three optical waves with frequencies f;, f; and f; are propagating in the fiber, they can

interact via the third order susceptibility y®) of the material and new waves with the
frequencies

fije =fitfi—Jfk (37)
can be generated by the FWM process, where i, j and k can have the values 1, 2, and 3.
= Three elements arranged in three classes can lead to 27 possible variations.

= If the third frequency (fi) in equals the first, or second (f;, f;) frequency no new
frequency is generated, resulting in f; or f; , respectively.

= If the first two frequencies are changing their places as well, no new frequencies are
generated.

= If k #1,j,k,9 residual combinations are left from the 27 variations.

Therefore, three waves with different frequencies are able to generate 9 new waves.

@



FOUR-WAVE MIXING (FW)

The table below shows the
possible combinations for the
generation of new waves due to
the FWM process for channels
with equidistant wavelength (left
column) and frequency spacing
(right column).

1,1,2
1,1,3
1,2,3
1,3,2
2,2,1
2,2,3
2,3,1
3,3,1
3,3,2

1557.001
1576.005
1577.002
1578.999
1580.001
1578.001
1581.003
1582.005
1581.001

189.99
189.87
189.99
190.23
190.35
190.11
190.47
190.59
190.47
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FOUR-WAVE MIXING (FWNM)

The frequency spacing depends on the
wavelength. Therefore, if the channels
have an equidistant wavelength
spacing, their frequency differences
are not completely equal.

If the original channels have an equal
frequency spacing, the new generated
waves will have the same spacing and
a large number of them falls exactly
into the original channels.

e Mam I fis2 Faas 332

J v T d + + + +
1574 1576 1578 1580 1582 1584 189.8 190.0 190.2 190.4 190.6
Wavelength  (nm) Frequency [THz]

Figure 9: (a) Mixing frequencies due to FWM
for an equal frequency spacing between the
original channels. (b) Mixing frequencies due
to FWM for equidistant wavelength spacing [1].
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FOUR-WAVE MIXING (FWNM)

For N original channels, the number of

400

i 2 3 4 5 6 7 & 9 10
Nr. of Channels

waves are strong enough, they can

interact again with each other or with

the original channels and will produce

additional mixing products. R S S S S
Nr. of Channels

Figure 10: Number of possible mixing products
due to FWM versus the number of channels [1].
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FOUR-WAVE MIXING (FWNM)

= The effectiveness of the generation of new mixing products depends strongly on
the phase matching condition between the distinct waves. In a dispersive material,
a larger frequency spacing results in a higher refractive index difference, and
therefore, a higher phase mismatch between the channels. Hence, the FWM
efficiency decreases for channels that are farther away.

= As a result, only adjacent channels generate mixing products effectively in
dispersive fibers, leading to a decrease of the signal to noise ratio in these
channels. The intensity of the mixing products between channels farther away is
negligibly small.
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MATHEMATICAL DESCRIPTION OF FWE

If the attenuation in the fiber is neglected as well, the NSE becomes

9B _ |B|?B 39
The superposition propagating through the fiber is represented by
B = Bye/(1z=01t) 4 B ol(kaz=w2t) 4 B eJ(ksZz=wst) 4 B oJ(Ksz=wsl) (40)

For convenience, the consideration is restricted to the case
Wy = W + Wy — W3 (41)

where w; and w, are called the pump waves whereas w; and w, are called the idler
waves.
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MATHEMATICAL DESCRIPTION OF FWE

In analogy to stimulated Raman scattering (SRS), the lower sideband can be seen as
the Stokes and the higher generated sideband as the anti-Stokes wave.

Pump 2 Pump 1
anti-Stokes Stokes
Idler Signal
Y A A A
! 2 Wavelength ' 3
Pump 1 Pump 2
Stokes P P anti-Stokes
Signal Idler
o, o, @, o,
Frequency

Figure 11: Position and notation of the distinct frequencies for w, = w; + w, — w3 [1].
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MATHEMATICAL DESCRIPTION OF FWIM

There are two special cases:

1) If all three original waves have the same frequency (w; = w, = w3), the process
is called a degenerate FWM where the new generated mixing product has the
same frequency w. It can be distinguished by its propagation direction.

2) If only two of the three waves are equal (w; = w, # w3), the process is called
partly degenerate. The frequency of the mixing product is lower than the pump
frequencies by Aw.

The second case is important for applications like the FWM wavelength converter
and the parametric amplifier.
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MATHEMATICAL DESCRIPTION OF FWE

A large number of terms can be obtained:
= |B;|?B; with i = 1,2,3,4 - responsible for the self phase modulation of the waves.

= | B; |ZBJ- with i # j - responsible for the cross-phase modulation of the waves.

All other terms are responsible for FWM but an effective generation of new waves
can only happen if the phase matching condition is fulfilled.

The distinct FWM term
w1+ Wy = w3 + wy (42)

where w; = 2nf;
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MATHEMATICAL DESCRIPTION OF FWE

f1 can be obtain from few combinations: 2f; + f4, — f5, 2f, — f, and f, + f3 — f;. NSE
for the first pump wave (f;) in the fiber:

0B
6_21 =Jy (|B1|2 + ZZ|B1|2> B; + FWM
i#1

(43)

where i = 1,2,3,4 and

FWM = 2B,B,B,*e/2ks4-2-1%2 2B B.B, *e/Ak23-1-1%Z 4 2B 2B, *eJ/Ak22-4-17

The distinct amplitudes are normalized to the input power of the pump wave

Py:B,, =[P - Ap
= The first term inside the brackets responsible for SPM.

= The second term describes the effect of XPM.

(=)



MATHEMATICAL DESCRIPTION OF FWE

Figure shows the conditions for the
four waves in an optical fiber if the
phases between the distinct waves are
matched.

5: 2
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MY \
. ‘ : ' . ' '
i
TiA PP
10__' 2| \
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J1A2x 10 I
1.0
I M I ! ! ! 1
2
] 2 4
0 T T ' T T T y T T
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Waveguide Length (m)
Figure 12: Power exchange between pump (|4;],
|A,1%), signal (|A43]?), and idler waves (|44]%)
during the propagation in the fiber [1]. @
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MATHEMATICAL DESCRIPTION OF FWE

. . o:g-' a (1w)
= [f the intensity of the pump waves 06 @

increases the behavior differs. 02]

0.0

= In optical telecommunications, relatively 0§ — =% 40 60 T
. . 0.8

small input powers propagate in the 06

fibers and only the periodic behavior 02

will be seen. o0 —_——
100 20 40 60 80 100
0.8 () (70W)
0.6 4
0.4
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Figure 13: Mixing product versus fiber

length for different input powers P; [1].
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PHASE MATCHING

In FWM, new waves with new frequencies are generated, contrary to SPM and XPM
where only the phases are changed. the rules of conservation of energy and
momentum must be fulfilled, leading to the phase matching condition.

Neglecting the phase alteration by SPM and XPM, We obtain
0A, _ . ik
g = 2]VP1A1A2A3 e] 1,2,-3,-4% (45)

Assuming that the amplitudes of the pump waves remain nearly the same during
propagation due to phase mismatch.

Integrating from z = 0 to z = [ and 4, = 0 in the fiber input

2vP .
Ay = —T1 4,(0)4,(0)45" (0)[e/Br2-3-4l — 1] (46)
Akl,Z,—3,—4
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PHASE MATCHING

By using sin(x/2) = /(1 — cosx)/2, the intensity change of the idler depends on the
propagation distance in the fiber.

sin(Aky 5 _3_41/2) i

(47)
Aky,-3,-4l/2

14""144144*"’611]2]312

where I, is the intensity of the waves, C is the sum of all constant and Ak, , _3 _, is the
phase mismatch. The phase matching condition is
Akyp-3-4 = ks +ky —kz — k3

1
=z (nyw; + Nyw; — N3w3z — Nyw,) (48)

ny nNy; N3 Ny
= 27

n A A3
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PHASE MATCHING

= The intensity of the idler increases

quadratically with the length of the 7 Phases are matched
waveguide if the phases are matched 2
(Ak = 0). g
= If the phases are not matched the Z
intensity shows a periodic function £
g Phases are not matched

along the fiber.

0 .
0 2
Fiber Length (arb. units)

Figure 14: Intensity of the idler wave versus
fiber length for phase matching and a phase
mismatch between the waves [1]. @



PHASE MATCHING

The coherence length for FWM is
T

|Aky 2,34

The origin of the phase mismatch lies in the frequency dependence of the refractive
index and the dispersion.

(49)

Lcoh —

Table 1: Coherence length in fused silica for different average wavelengths and
channel spacings

Leon(13 ) [m] | Leon(1.55 um) [m] | Leon(1.6 um) [m]
28 2.8 2.3

1000
100 3293 286 233
10 13304 1144 1144
1 33557912 2863923 2338930
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PHASE MATCHING

= The refractive index difference and
therefore the phase mismatch is weak for
a small channel spacing.

= Large coherence lengths for rather large
channel spacings are possible in the
range of the fibers zero dispersion.

Phase Mismatch (m’')

1300 nm

1 10 100 1000
Channel Spacing (GHz)

Figure 15: Phase mismatch against the
channel spacing in fused silica for an average
wavelength of 1600 nm (L-band), 1550 nm (C-

band) and 1300 nm (S-band) [1]. @



PHASE MATCHING

= The intensity in the fiber increases until it
reaches a maximum at the coherence
length.

= It decreases until the fiber length
corresponds to two times the coherence
length.

Normalized Idler Intensity

0.0

0.0 l OTS l 1!0 ‘ 115 ' 270 l 2?5 I 3!0 . 3?5 l 4.0
Waveguide Length (km)

Figure 16: Normalized idler intensities for
a 4 km fiber when the attenuation is

neglected (channel spacing = 50 GHz) [1].
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PHASE MATCHING COMPENSATION

= The FWM not only leads to a degradation of the system performance, but it can
also be exploited for a number of applications as well. In this case, the phase
mismatch has to be compensated.

= The easiest method for a compensation is using only small channel spacings but
this method is limited due to the spectral width of the distinct channels.

= Birefringence is a possibility for phase matching. However, the refractive index
difference in standard optical fibers is too small to compensate and also arbitrary.
On the other hand, the birefringence is constant in polarization-maintaining fibers
and the refractive index difference is much higher than in standard single mode
fibers.

= The most often used method for phase mismatch compensation is the introduction
of devices with a very small dispersion in the required wavelength range.
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FWIM'S IMPACT ON COMMUNICATION
SYSTEMS

= The advantages of DSF relating to their dispersion properties lead to a broad
insertion of these fibers for high bit-rate transmission systems. On the other hand,
the dispersion advantage is a disadvantage in relation to the FWM. Hence, the
incorporation of WDM into these systems is rat her difficult.

= The main effect that is responsible for the degradation of the system performance
in WDM systems due to FWM is the coherent superposition between the original
and the new generated waves at the receiver.

(=)



FWIM'S IMPACT ON COMMUNICATION

SYSTEMS

=A WDM system consisting of 10
channels with equal frequency spacing
can generate 450 new waves in 28
frequency slots.

= For example, the two channels in the
middle of the WDM band are
superimposed with 29 new waves.

T v T v 1 hd L ¥ | hd l
| Mixing Products
Interfering with T EEEERE
1 WDM-Channels—_ g & B B B H B & B B :

Original
— WDM-Channels
1 Mixing Products
| out of
WDM-Band
0 5 10 15 20 25

WDM-Channel

L

Figure 17: FWM products for a 10 channel
WDM system. The out-of-band products can

be eliminated by optical filtering [1].
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FWIM'S IMPACT ON COMMUNICATION
SYSTEMS

The mixing products that fall together with the original WDM channels are
responsible for a degradation of the system performance.

Assume only one wave generated by the FWM process and one wave in the WDM

channel, both with the same frequency and wavenumber.

EFWMej(kZ_wt'l'QDl) E'WDMej(kZ_wt'l'(pZ) (50)

ErwMm = EwpMm =

where E is a slowly varying amplitude and ¢ is the phase.

The WDM wave superimposes with the FWM wave
Es = Epwm + Ewpm = (Erwme’ 1 + Eywpue’#2)el (k2=0t) (51)

The photodiode in the receiver can only detect the intensity of the wave.
~ 12 ~ ~ %
Is = |Es|” = EsEs = Ipwm + Iwpm + 2/ TewmIwpm €0s(91 — ¢2) (52)
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FWIM'S IMPACT ON COMMUNICATION
SYSTEMS

[s = |ES

2 ~ ~ %
|” = EsEs = Ipwm + fwom + 24/ IrwmlIwpm 0s(91 — ¢3)

= The received signal in the photodiode is either reinforced or weakened,
depending on the relative phase between the original channel and the mixing
product.

= The relative phase depends on the superposition of all the phases of the mixing
products which fall into each WDM channel.

= The bit pattern transmitted in the channels is random and thus the relative phase is
random as well. As a result, the receivers' output current shows a random fading.

= It responsible for an increase of the BER in the system.

o



SOLITONS

= The existence of solitons in optical fibers is the result of a balance between the
group velocity dispersion (GVD) and self-phase modulation (SPM).

= The pulse envelope for solitons not only propagates undistorted but also survives
collisions just as particles do.

= Solitons are not only fundamental interest but they have also found practical
applications in the field of fiber-optic communications.

=)



THE DISCOVERY OF SOLITONS

= In 1834, Scottish engineer and scientist = t‘;/\
John Scott Russell observed a water . |
wave propagated in a river over several ’rl\ : | — 1
kilometers with a constant velocity and l”\ = I‘
without significant change of its shape. ! f‘/\ 7
I — :
= The wave can walk through each other T+ | = ‘
and keep their shape after a collision, H\ f =1 ‘
behaves like a particle. Russel called T = ol .,
them solitary waves. = = [F —————.
e —— —— 4 -
s W — e

Figure 18: Russel solitons experiment [2]. @



THE DISCOVERY OF SOLITONS

1834 - Russell observed a solitary wave in a river.

1965 - The word soliton was coined to describe the particle-like properties of pulses
propagating in a nonlinear medium.

1973 - the existence of solitons in fibers was suggested and demonstrated using
numerical simulations.

1980 - solitons was observed experimentally in a fiber.

1988 - the potential of solitons was first demonstrated for long-haul communication.
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MATHEMATICAL DESCRIPTION

Optical soliton can be described by the nonlinear Schrodinger equation (NSE)
0B B2 + 2 k, 0°B -
Tz =77 2 oT2 (53)

Assume that the attenuation is negligible. If the soliton is stable, the linear part must
be compensated by the nonlinear part. Otherwise, the pulse will spread in time (due
to linear dispersion) of frequency (due to SPM).

By using the standard NSE and using the following solitons units

B Z T
A:— = — T = —
\/P_O Lp To
we get
Jj 0A , 0%4A
—— = —yPy|A|?A + 54
L, 08 YPolAl 27,2 072 (54)
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MATHEMATICAL DESCRIPTION

The ratio between the dispersive and nonlinear length is
Lp _ YPyTo” _ N2
Ly kgl (55)

This ratio shows which effect have stronger effect on the fiber. If the ration equal 1,
dispersive and nonlinear effects can compensate each other and a soliton is formed.

The ratio above and Ly, = 1/yP, the NSE can be written as
— = —N?|A|?A = k 0%
]8_5_ —N°|A] +Esgn( z)ﬁ (56)

The standard form of a soliton can only be formed in the anomalous dispersion

region of the optical fiber
YTo’Py B
u=NA = 57
/ el /Py &7
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BRIGHT SOLITONS

For anomalous dispersion sgn(k,) = —1 and
'au+| |2 +102u_0 58
Jog T+ 952 = (58)

This equation corresponds to the time-dependent,

dimensionless, nonlinear Schrodinger equation of
quantum mechanics.

Intensity

Figure 19: Soliton in a nonlinear

waveguide [1].
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BRIGHT SOLITONS

An unlimited possible solutions can be found but the most important one is solution of a
hyperbolic secant shape. The input pulse having an initial amplitude of

T 2N
u(0,7) = Nsech (—) = Nsech(1) = —— (59)
To et +e 7

where sech = 1/cosh.
= Fundamental soliton (N = 1) - shape remains unchanged during the propagation.

= Higher order solitons (N > 1) - follows a periodic pattern when the input shape
recovers at { = mn/2 where m is integer.

The soliton period is

Zo =5 Llp =5 (60)
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BRIGHT SOLITONS

Trequency deviotion
Distonce

Time =2

Trequency deviotion

Figure 20: Evolution of the first-order (left column) and third-order (right column)

solitons over one soliton period. Top and bottom rows show the pulse shape and
chirp profile, respectively [3].
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BRIGHT SOLITONS

Solving Eq. (58), we get the well-known ‘sech’ solution for the fundamental soliton by
integrating the NLS equation directly

u(&,7) = Nsech(t) exp(j&/2) (61)

It shows that the input pulse acquires a phase shift {/2 as it propagates inside the
fiber, but its amplitude remains unchanged. It is this property of a fundamental
soliton that makes it an ideal candidate for optical communications. In essence, the
effects of fiber dispersion are exactly compensated by the fiber nonlinearity when
the input pulse has a ‘sech’ shape and its width and peak power are related in such a
way that N = 1.
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PULSE EVOLUTION

= An important property of optical
solitons is that they are remarkably
stable against perturbations.

= The fundamental soliton requires a
specific shape and a certain peak
power corresponding to N = 1.

= However, it can be created even when
the pulse shape and the peak power
deviate from the ideal conditions.

1.0 ~

Power

Figure 21: Evolution of a Gaussian pulse with
N =1 over the range ¢ =0 — 10. The pulse
evolves toward the fundamental soliton by
changing its shape, width, and peak power [3].
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PULSE EVOLUTION

= A similar behavior is observed
when N deviates from 1 (in the
rangeof N — 0.5 <N < N + 0.5).

= The pulse width and the peak
power oscillate initially but
eventually become constant after
the input pulse has adjusted itself
to satisfy the condition N = 1.

1.6 5

1.2 4

Power

0.8 - |

0.4% j/
\ _3< . j 9§

=
-
=

-~

Figure 22: Pulse evolution for a ‘sech’ pulse
with N = 1.2 over the range ¢ = 0 — 10. The
pulse evolves toward the fundamental

soliton (N = 1) by adjusting its width and

peak power [3]. @



PULSE EVOLUTION

= Higher intensities in the pulse center create a temporal waveguide by increasing
the refractive index only in the central part of the pulse.

= Such a waveguide supports temporal modes just as the core-cladding index
difference led to spatial modes.

= Most of the pulse energy can still be coupled into that temporal mode even when it
does not match the temporal mode precisely.

= The rest of the energy spreads in the form of dispersive waves.

©



DARK SOLITONS

= The NSE can be solved even in case on normal
dispersion (sgn(k,) = 1).
= The intensity profile of the resulting solutions

exhibits a dip in a uniform background, and it
is the dip that remains unchanged during

propagation inside the fiber.

Intensity

= Those solitons are called 'dark solitons’.

Figure 23: Dark soliton in a waveguide

with normal dispersion [1].



DARK SOLITONS

The general solution can be written as
ug(§,7) = (ntanh{ — jk) exp(juo*$)

and
{=n(t—x&), n=ugcosp, k=uysing

where u, is the amplitude of the continuous-wave (CW) background and ¢ is an
internal phase angle in the range 0 to 7 /2.

An important difference between the bright and dark solitons is that the speed of a
dark soliton depends on its amplitude n through ¢.For ¢ = 0,
ugq(é,7) = uy tanh(ug1) exp(juy?é)

= ¢ = 0 - The dip drops to zero. This soliton is called black soliton.

= ¢ # 0 - The dip does not drop to zero. This soliton is called gray soliton.
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TYPES OF DARK SOLITONS

In contrast with bright solitons which have a constant phase, the phase of a dark
soliton changes across its width.

1.0 — [
[ =0 | ¢=n/8 '
08 1 T ¢=r/4____
N__ L
e
506
) 0t O=3m/8 -
2 0.4
O
o
0.2 -1t
0.0
4 2 0 2 4 -4 -2 0 2 4
Time t Time T
(a) (b)

Figure 24: (a) Intensity and (b) phase profiles of dark solitons for several values of
the internal phase ¢.The intensity drops to zero at the center for black solitons [3].
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STIMULATED LIGHT SCATTERING

= Rayleigh scattering is elastic scattering for which the frequency (or the photon
energy) of scattered light remains unchanged. By contrast, the frequency of scattered
light is shifted downward during inelastic scattering.

= Two examples of inelastic scattering are Raman scattering and Brillouin scattering.
Both of them can be understood as scattering of a photon to a lower energy photon such
that the energy difference appears in the form of a phonon. The main difference
between the two is that optical phonons participate in Raman scattering, whereas
acoustic phonons participate in Brillouin scattering. Both scattering processes result in
a loss of power at the incident frequency. However, their scattering cross sections are
sufficiently small that loss is negligible at low power levels.

= At high power levels, the nonlinear phenomena of stimulated Raman scattering (SRS)
and stimulated Brillouin scattering (SBS) become important. The intensity of the
scattered light in both cases grows exponentially once the incident power exceeds a
threshold value. SRS and SBS were first observed in optical fibers during the 1970s.
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0PTICAL AND ACOUSTIC PHONONS

= In physics, a phonon is a collective excitation in a periodic, elastic arrangement of
atoms or molecules in condensed matter, like solids and some liquids. Often
designated a quasiparticle, it represents an excited state in the quantum
mechanical quantization of the modes of vibrations of elastic structures of
interacting particles. Phonons play a major role in many of the physical properties
of condensed matter, like thermal conductivity and electrical conductivity. The
study of phonons is an important part of condensed matter physics.

= The concept of phonons was introduced in 1932 by Soviet physicist Igor Tamm. The
name phonon comes from the Greek word gpwun (phone), which translates to sound
or voice because long-wavelength phonons give rise to sound. Shorter-wavelength
higher-frequency phonons give rise to heat.

(=)



0PTICAL AND ACOUSTIC PHONONS

w(k) optical
acoustic
-nt/a 0 K T/a

Figure 25: Optical phonons arise from out of phase vibrations between neighboring
atoms within the unit cell, while in phase vibrations give rise to acoustic phonons.
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STIMULATED LIGHT SCATTERING

Even though SRS and SBS are quite similar in their origin, different dispersion
relations for acoustic and optical phonons lead to the following differences between
the two in single mode fibers:

1) SBS occurs only in the backward direction whereas SRS can occur in both
directions.

2) The scattered light is shifted in frequency by about 10 GHz for SBS but by 13 THz
for SRS (this shift is called the Stokes shift)

3) The Brillouin gain spectrum is extremely narrow (bandwidth < 100 MHz)
compared with the Raman-gain spectrum that extends over 20-30 THz.

The origin of these differences lies in a relatively small value of the ratio v,/c ~107°>,
where v, is the acoustic velocity in silica and c is the velocity of light.
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RAMAN SCATTERING

= The spontaneous Raman scattering was
discovered, long before the invention of the laser,
in the year 1924 by the Indian physicist Sir
Chandrasekhara Raman (knighted 1929).

= During a ship travel, after a visit to a congress in
England, Raman admired the wonderful blue color
of the Mediterranean sea. He found the origin of
this effect in the scattering of the sun light at the
molecules of the water.

= For the discovery of the effect, Raman won the
Nobel Prize in physics in 1930.

Figure 26: [4]

Polarisation
of
Scattering
Fig 1 Unmodified
Fig 2 Modified

Fig 3 «1)
Incident Spectrum

Fig 3¢
Scattered Spectrum

Fig 4 (1)
Incident Spectrum

Fg 4 Q)
Scattered Spectrum



RAMAN SCATTERING

= When photons hit material, they mostly scatter elastically and the energy is
conserved which called "Rayleigh scattering".

= Very small fraction of the photons (1 part in a million) are inelastic scattered and
the energy is not conserved, this is called "Raman scattering".

I =-Raman scattered light

Sample molecules Raman scattered light \
NU\I\/\ E>Eo /
Incident laser “
NN\, J— AU\, Rayleigh scattered light | |
Eo E=Eo \ Rayleigh scattered light /
/\/\ Raman scattered light
E-iE(:-

Breakdown of scattered light

Figure 27: Schematics of Raman effect.
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RAMAN SCATTERING

In Raman scattering the molecule is excited to virtual energy level and fall back to
different energy level. There are two types of Raman scattering:

1) Stokes scattering - when a molecule in the ground state excite and fall to a
higher energy level, a photon with a lower energy (as a result a longer
wavelength) is emitted.

2) Anti-Stokes scattering - when a molecule in excited state absorb photon the fall
to the ground state, a photon with a higher energy (as a result a shorter
wavelength) is emitted.

©



RAMAN SCATTERING

The energy difference is converted to vibration of the molecule atoms.

" | level
. Virtual leve
Energy (a) (b)
High4 Virtual level ; Py
Stokes Anti-Stokes
Incident light Rayleigh scattered light Raman scattered light Raman scattered light
VA VAN VA VAN N N AVAVAVAVAN
Vibrational / \
level \ J?m‘-rﬁ\;f1|1'f-:'-ri*nc-:*e~:ri~;iu: (?/j
Low | Ground level o — | "
Electron

Figure 28: Diagram for the description of (a) Rayleigh scattering, (b) Stokes
Scattering and (c) Anti-Stokes Scattering.
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RAMAN SCATTERING SPECTRA

Pump
(a) (b) (©)
- e mmpen - = o - - — - - V___r___--—-—
1rp
; _— Stokes anti-Stokes
fp S - fa |
— —_— Af
Af

I

cf—————4 T YT T T Tl T T T Tl rrrrrrrrri

g f f
Frequency

Figure 29: Energy diagram for the description of the Raman Scattering. (a)
Generation of the Stokes. (b) Generation of the anti-Stokes wave. (¢) Distribution of

the distinct frequencies for the Raman process [1].
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RAMAN SCATTERING SPECTRA

Raman scattering can be used for spectroscopy of vibration that are IR-inactive. The
Figure below shows a frequency shift due to Raman scattering.

Rayleigh scattered light
S ‘Anti-Stokes Raman scattered Ii_ght Stokes Raman scattered light 2
& : : : : : : : : :
C
=
£
c
T ' ' ' '
S : : E :
T ‘ ' b .
oo : : : :
Wavenumber (cm™) -1000  -800 -600 -400 -200 0 200 400 600 800 1000
Wavelength (nm) 505 510 516 521 526 532 538 544 550 556 562

Figure 30: Raman spectrum of ethanol obtained by 532 nm excitation wavelength.
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RAMAN SCATTERING

The Raman coefficient for the pump is slightly different from that for the Stokes wave
because the pump is frequency-shifted. The Raman gain coefficient in fibers scales,
to first order, with the inverse pump wavelength. Therefore, the Raman coefficient of
the pump is related to that of the probe as:

The intensity is connected to the power via the effective area of the waveguide. The
Raman gain coefficient depends on the effective area of the fiber, as follows:

Jr = s * Aefr

where gr as the Raman gain.




RAMAN SCATTERING IN OPTICAL FIBERS
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Figure 31: (a) Raman gain spectrum of fused silica at 4, = 1 um and (b) energy levels
participating in the SRS process [3].
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Check this

RAMAN SCATTERING IN OPTICAL FIBERS

The spectrum of the Raman gain depends on the decay time associated with the excited
vibrational state. In the case of a molecular gas or liquid, the decay time is relatively long
(~1 ns), resulting in a Raman-gain bandwidth of ~1 GHz. In the case for optical fibers, the
bandwidth exceeds 10 THz. Figure 31 shows the Raman-gain spectrum of silica fibers.

The broadband and multipeak nature of the spectrum is due to the amorphous nature of
glass. More specifically, vibrational energy levels of silica molecules merge together to
form a band. As a result, the Stokes frequency w; can differ from the pump frequency w,
over a wide range. The maximum gain occurs when the Raman shift fr = f, — f; is about
13 THz. Another major peak occurs near 15 THz while minor peaks persist for values of fp
as large as 35 THz. The peak value of the Raman gain gy is about 1-10-!3 m/W at a
wavelength of 1 pm. This value scales linearly with f, (or inversely with the pump
wavelength 1,), resulting in g = t - 107 m/W at 1.55 pm.




RAMAN SCATTERING

At the same time, the relative polarization between pump and Stokes wave has, of course,
an influence on the efficiency of the Raman scattering as well. The differential equation
system, describing the intensities of both waves under the influence of Raman scattering
during its propagation through the medium is then represented by:

dIs Ir
dz Kl T %k (64)
dl Wy g
p _ p IR
dz . K, Pls ol (65)

where K is a factor that includes the relative polarization between the pump wave and
the Stokes wave. The Raman gain has its maximum if K; = 1, the case where both waves
have an identical polarization. Standard single mode fibers show birefringence and
hence, the polarization state of the waves is arbitrary. In this case, the polarization factor
is K; = 2.




STIMULATED RAM

AN SCATTERING

Pump-Wave
------- = Stokes- Wave
’ ' ‘-.‘ I
'
Spontaneous scattering Stimulated scattering

Figure 32: Basic differences between (a) spontaneous and (b) stimulated scattering

[1].
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STIMULATED RAMAN SCATTERING

The Raman scattering process becomes stimulated if the pump power exceeds a
threshold value. The differences can be explained by the model of harmonic
oscillator:

= The pump wave hits a dipole oscillating with its resonance frequency, an additional
Stokes wave will be generated by the dipole. The dipole emits this Stokes wave
with a radiation pattern typical for a dipole that shows a sin 8 dependence.

= If the intensity of the pump wave is higher than a particular threshold, then the
wave scattered at the first dipole is relatively intense. The Stokes wave of the
following dipole superimposes coherently in the forward direction with the Stokes
wave of the first dipole.
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THRESHOLD OF RAMAN SCATTERING

The intensities of the pump and Stokes waves under the influence of Raman
scattering in an optical fiber are described by the differential equation system (64)
and (695). If, in a first approximation, it is assumed that the intensity depletion of the
pump due to the Raman interaction is small, the first term on the right side of (65)

can be neglected.
I,(z) = I,(0) exp(—apz)

Using Equation (64) we obtained

IR
Is(z) = I5(0) exp ?Ip(o)l‘eff — QsZ
S

where the effective interaction length is
Legg=1— exp(—apz)/aS
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THRESHOLD OF RAMAN SCATTERING

The threshold for stimulated scattering is defined as the input intensity value of the
pump wave for which the Stokes wave shows a growth in the fiber [,;. The
amplification due to the Raman process must exceed the attenuation loss of the

Stokes wave.
9r
?IpGLeff > asZ
S
where I, = Pyg/Aefr- The threshold of stimulated Raman scattering (SRS) is
asAefst

Py >
° 9r
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THRESHOLD OF RAMAN SCATTERING

IR pGLeff » AsZ A R .
S 13.0 4 -~ 0.104
= The intensity of the Stokes wave increases i 125- \T”QG
very strongly from O to 5 km in this range the ] g
inequality is valid. % ) z:: g
= [f the waves propagate further, the intensity ‘_‘E o oo "fc_::
of the pump decreases. The growth rate of the 5 - 2o 3
Stokes wave is smaller and comes to a 5 Z:j
maximum after a propagation distance of 14 e
km. After this the attenuation (the right side) ’ * Fberlength (km) 2
exceeds the amplification and the Stokes Figure 33: Computed power of a pump wave
wave will decrease. and a Stokes wave along a fiber [1].
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THRESHOLD OF RAMAN SCATTERING

The forward threshold for Raman scattering in optical fibers is defined as the input
pump power at which the output powers for pump and Stokes wave are equal. It is
estimated as:
KsAeff
IR Lett

The Equation is an approximation and is only valid under the conditions that the
power transfer of the pump to the Stokes wave due to the Raman process is
negligible, the effective area for pump- and Stokes wavelength are equal, the Raman
gain can be approximated by a Lorentz function, and the initial Raman signal is
generated by spontaneous scattering only, i.e., no wave with the Raman frequency
shift is launched into the fiber.
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THRESHOLD OF RAMAN SCATTERING

= The threshold for the stimulated Raman scattering is Py, ® 1 W in polarization-
maintaining fibers (K, = 1) with an effective area of A = 80 um?, a Raman gain of
gr = 7107 m/W, and an effective length of L ¢ =~ 22 km. Whereas, in standard
single mode fibers, due to the arbitrary distribution of the polarization states of
pump and Stokes wave (K = 2), it has a threshold of P, = 2 W.

= If the intensity of the pump wave is higher than the threshold, the power of the
Stokes wave at the end of the fiber is greater than the output power of the pump.

- Figure below shows the behavior for a pump intensity of I, = 1.9 - 10'° W/m?* and
an input power of P, =15W for a polarization-maintaining fiber (gr =7

1071 m/W, Agge = 80 um?, @ = 0.2 dB/km). The figure shows clearly the intensity
loss of the pump due to the power transfer to the Stokes wave.
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RAMAN SCATTERING
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Figure 34: Pump and Stokes waves in an optical fiber whose pump depletion with the
parameters above was taken into consideration and an input pump power above the

threshold far stimulated scattering [1].
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RAMAN SCATTERING

= After a propagation distance of 20 km, the Stokes
wave increases very strongly and the depletion
of the pump can be no longer neglected.

= At a distance of 29 km, the intensity of the Stokes
exceeds that of the pump.

= After a distance of 34.6 km, the pump intensity is

no longer strong enough to amplify the Stokes
wave further.

= For longer distance, the attenuation in the fiber is

stronger than the power transfer between pump
and Stokes wave.
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STIMULATED RAMAN SCATTERING

» If Agge = 50 um? and a = 0.2 dB/km as the representative values, Py, is about 570
mW near 1.55 pym. It is important to emphasize that Eq. (66) provides an order-of-
magnitude estimate only as many approximations are made in its derivation. As
channel powers in optical communication systems are typically below 10 mW, SRS
is not a limiting factor for single-channel lightwave systems. However, it affects the
performance of WDM systems considerably.

= Both SRS and SBS can be used to advantage while designing optical communication
systems because they can amplify an optical signal by transferring energy to it
from a pump beam whose wavelength is suitably chosen. SRS is especially useful
because of its extremely large bandwidth. Indeed, the Raman gain is used routinely
for compensating fiber losses in modern lightwave systems.
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RAMAN RMPLIFIER

= Using Raman amplification, the whole transmission bandwidth of an optical fiber
can be exploited. For instance, studies proposed the realization of a U-band (1625 —
1675 nm) amplifier with the Raman effect.

= In an optical fiber, multiple Raman processes can be carried out simultaneously.
This means that a broadband amplification is possible if many pump lasers are
combined. With such a concept, a Raman amplifier with a gain bandwidth of more
than 100 nm was demonstrated.

= A particular advantage of the Raman amplification is the distributed amplification
inherent in the process.
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RAMAN AMPLIFIER

Hence, a Raman amplifier can be pumped in forward, backward, or both directions.
The basic set up of a Raman amplifier pumped backwards is shown in the Figure
below.

Coupler

1520 - 1620 nm
e

1410 - 151‘0\
Isolator
Pmnplaser

Figure 35: Schematic set-up of a backward-pumped Raman amplifier. [1]
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RAMAN LASER

= A Raman laser is, in principle, a Raman amplifier in a resonator cavity. Due to the
cavity, the threshold of stimulated scattering is decreased.

= The Raman scattering in the fiber generates new waves with different frequencies.
Only the beam, or the wavelength, that hits the tuning mirror perpendicularly
forms a Fabry-Perot resonator together with the first dichroic mirror.

= For compact laser devices, the mirrors can be replaced by a periodic alteration of
the refractive index in the core of the fiber (fiber Bragg grating).
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RAMAN LASER

Pump
FBG FBG
it = HHH ——
a)
Yb-doped double clad Fiber P-doped Fiber
999/ 999/
106;1m @ 106pm/48pm 148um/06pm
976 nm|"
999/ 124um 124;m
5% 15%
b)

Figure 36: Fiber Raman laser with a resonator composed of fiber Bragg gratings
(FBG = fiber Bragg grating, Yb = Ytterbium, P = Phosphosilicate). (a) Basic set up. (b)
Diode-pumped fiber laser [1].
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BRILLOUIN SCATTERING

= In the 1920s the French physicist Leon Brillouin investigated the scattering of light
at acoustic waves.

= Brillouin scattering is cause by interaction between light and material. Different
from Raman scattering no vibrations are involved. Density fluctuations of the
medium are involved that can be seen as acoustic waves or phonons. The density
fluctuations can be caused by acoustic wave.

= SBS decreases the SNR and increases BER (Bit-Error-Rate).

= When SBS exceeded the threshold, the signal can not be increased and all excess
power is scattered back.
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BRILLOUIN SCATTERING

Figure 37: Scattering at a density modulation of an optical medium and
corresponding vector diagram if the wave moves under an angle (a,b) or in the
opposite direction to the density modulation (c) [1].

©



BRILLOUIN SCATTERING

Brillouin scattering is the result of the deviation of an optical wave on a density
modulation in the material, caused by an acoustic wave with the sound velocity v,.

The scattering process requires that energy as well as moment um are conserved
during the interaction. The momentum conservation requires that the wave vectors
satisfy:

ks = kgt kp fs=fetfa

As expected from the Doppler effect, the frequency of the scattered wave decreases
if the density modulation moves away and it increases if the density modulation
comes nearer.
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BRILLOUIN SCATTERING

In our case kg = kg + k,. Assume that the absolute values of the wave vectors for the
incident and the scattered wave are approximately equal (|ks| = |kg|),we obtain
|kA| = 2|kE| sin @

Using |ks| = w/va and |kg| = 2nn/Ag, where v, is the acoustic velocity, the acoustic
frequency is given as: (67)

2vpn
fa= sin 0
AE

= In the forward direction, no frequency shift occurs because 8 = 0 and f, = 0.

= If the incident and the scattered waves propagate in opposite directions, § = 0 and
the frequency shift is at a maximum.

o



BRILLOUIN SCATTERING

"""""""""""" ' -1/\/\
fA

Figure 38: Quantum mechanical model of Brillouin scattering. One photon of the
incident wave is annihilated and creates simultaneously a photon of the scattered
wave and a phonon [1].
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STIMULATED BRILLOUIN SCATTERING

A Stokes Wave

Beating between Pump- and Stokes Wave e

Figure 39: Generation of an acoustic wave due to the superposition between the
pump wave, propagating in forward direction, and the backscattered Stokes wave

[1]. @



STIMULATED BRILLOUIN SCATTERING

= If the intensity of the pump wave is so high that - as in the case of Raman scattering
- the power transfer to the Stokes wave (generated at an arbitrary point in the
medium) is higher than the attenuation it will experience, a stimulated process can
occur. In this case the superposition between the pump wave (propagating in the
forward direction) and the backscattered Stokes wave will cause a fading with a
frequency that corresponds to the acoustic wave.

= Therefore, the fading leads to an amplification of the acoustic wave. A stronger
acoustic wave causes a stronger Stokes wave which results in a stronger intensity
modulation, and so on. Since the pump by itself is responsible for an amplification
of the effect, the process is called stimulated.
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STIMULATED BRILLOUIN SCATTERING =

Stimulated Brillouin scattering is the interaction between the pump wave, the
generated Stokes wave and the acoustic wave in the fiber.

As a result, the beating term acts as source that increases the amplitude of the sound
wave, which in turn increases the amplitude of the scattered wave, resulting in a
positive feedback loop. SBS has its origin in this positive feedback, which ultimately
can transfer all power from the pump to the scattered wave. The feedback process is
governed by the following set of two coupled equations:

dl,
dl

where [, and /s are the intensities of the pump and Stokes fields, gp is the SBS gain,
and « is the fiber losses.
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STIMULATED BRILLOUIN SCATTERING

For small intensities, the pump intensity depends only on the fiber attenuation:
I,(2) = I,(0) exp(—az) (71)

The pump intensity at distance L is

g I,(0)
o(2) = 1,(0) jo exp(~az) dz =22 (1~ e™%) = [(0)Leg (72)
where L. 1s the effective interaction length.
dl
_dZS = |-gpl,(2) + als (73)
The intensity of stokes wave in distance L is
9B PoLess
I,(L) = I(0 — 74
J(L) = I )exp< Aeff_aL) 74
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STIMULATED BRILLOUIN SC.
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Figure 40: Power of the Stokes wave at the input of a polarization-maintaining fiber
against the fiber length for two different pump powers [1].
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THE BRILLOUIN GAIN

The Brillouin gain coefficient of a fiber is determined by three important parameters: the
frequency shift between the pump and Stoke waves (f,), the peak Brillouin gain (gg_,,)
and the linewidth of the distribution (Af,).

The Brillouin gain coefficient has a very narrow bandwidth and its maximum determines
the frequency shift or the frequency of the acoustic wave. The distribution is
approximated by a Lorentzian function:

9B max

98U = T30~ f)/ @Fa/ 2T

For pulses with a temporal duration much longer than the phonon lifetime, the maximum
of the Brillouin gain gg_ . 18

(75)

4n8p?
cAp’pfabfa
where p is the elasto-optic constant and p is the material density.

YBmax =
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THE BRILLOUIN GAIN

If the pump pulses are temporally short, their spectrum will be correspondingly
large and the gain curve merges into a Gaussian distribution:

C (f = f)?
( )={ +(1—-0C)ex [—ln(Z) 76
92) =\ TG = 1/ @fa/ 20 P (8fa/2)? || IBmax  (70)
1---. Lor:entzian distribution
. éuarl.?:st.izz:inc;iztr:iiulion
g C=0,2
E

Frequency Shift (GHz)

=)



THE

Figure below shows the Brillouin gain spectra at 4, = 1.525 um for three different

kinds of single-mode silica fibers. Both the Brillouin shift vz and the gain bandwidth
Avgp can vary from fiber to fiber because of the guided nature of light and the
presence of dopants in the fiber core. The fiber labeled (a) in Fig. 40 has a core of
nearly pure silica (germania concentration of about 0.3% per mole). The measured
Brillouin shift vy = 11.25 GHz is in agreement with Eq. (68). The Brillouin shift is
reduced for fibers (b) and (c) of a higher germania concentration in the fiber core.
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BRILLOUIN-GAIN SPECTRA
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Figure 41: Brillouin-gain spectra measured using a 1.525 ym pump for three fibers
with different germania doping: (a) silica-core fiber, (b) depressed-cladding fiber
and (c) dispersion-shifted fiber. Vertical scale is arbitrary [3].
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STIMULATED BRILLOUIN SCATTERING =

The doublepeak structure for fiber (b) results from inhomogeneous distribution of
germania within the core. The gain bandwidth is larger than that expected for bulk
silica (Avg = 17 MHz at 4, = 1.525 um). A part of the increase is due to the guided
nature of acoustic modes in optical fibers. However, most of the increase in
bandwidth can be attributed to variations in the core diameter along the fiber
length. Because such variations are specific to each fiber, the SBS gain bandwidth is

generally different for different fibers and can exceed 100 MHz; typical values are
~30 MHz for 4, near 1.55 pym.

The peak value of the Brillouin gain in Eq. (75) occurs for () = (5 and depends on
various material parameters such as the density and the elasto-optic coefficient. For
silica fibers gz = 5- 10711 m/W. The threshold power level for SBS can be estimated
by solving Egs. (69) and (73) and finding at what value of I,,, I; grows from noise to a

significant level.
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Check eq 17

STIMULATED BRILLOUIN SCATTERING =

The threshold power P, = I Aqfr, Where Aqfr is the effective core area, satisfies the
condition:

9BPnLett/ Aesr = 21 (77)
where L. 1s the effective interaction length defined as
1 —exp(—alL
Lefr = pi-al) (78)
a

and a represents fiber losses. For optical communication systems L. can be
approximated by 1/a as aL > 1 in practice. Using A ¢ = Tw?, where w is the spot
size, Py, can be as low as 1 mW depending on the values of w and «a. Once the power
launched into an optical fiber exceeds the threshold level, most of the light is
reflected backward through SBS. Clearly, SBS limits the launched power to a few
milliwatts because of its low threshold.
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STIMULATED BRILLOUIN 3C]

1000 -

Figure 42: Threshold of stimulated Brillouin scattering versus fiber length in a
standard single mode fiber with different attenuation (Kz = 2, gz = 21071 m/W,

Aegr = 80 um?) [11].
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STIMULATED BRILLOUIN SCATTERING =

The preceding estimate of P, applies to a narrowband CW beam as it neglects the
temporal and spectral characteristics of the incident light. In a lightwave system, the
signal is in the form of a bit stream.

For a single short pulse whose width is much smaller than the phonon lifetime, no
SBS is expected to occur. However, for a highspeed bit stream, pulses come at such a
fast rate that successive pulses build up the acoustic wave, similar to the case of a
CWbeam, although the SBS threshold increases. The exact value of the average
threshold power depends on the modulation format (RZ versus NRZ) and is typically
~5 mW. It can be increased to 10 mW or more by increasing the bandwidth of the
optical carrier to >200 MHz through phase modulation. SBS does not produce
interchannel crosstalk in WDM systems because the 10-GHz frequency shift is much
smaller than typical channel spacing.
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