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INTRODUCTION

The response of any dielectric material to light such as silica glass of optical fibers, becomes nonlinear. 

Even though silica is intrinsically not a highly nonlinear material, the waveguide geometry that confines 

light to a small cross section over long fiber lengths makes nonlinear effects quite important in the design 

of modern lightwave systems. The nonlinear phenomena that are most relevant for fiber-optic 

communications are:

1 Nonlinear phase modulation

1.1 Self-phase modulation

1.2 Cross-phase modulation

2 Four-wave mixing

3 Solitons

4 Stimulated light scattering

4.1 Stimulated Brillouin scattering

4.2 Stimulated Raman scattering 3



THE NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrodinger equation (NSE) is of particular importance in the 

description of nonlinear effects in optical fibers.

The nonlinear term of the NSE leads to a spectral broadening of the pulses which can 

interact with the dispersion in different ways.

The nonlinear wave equation is:

∇2𝐄 −
𝑛2

𝑐2

𝜕2𝐄

𝜕𝑡2
=

1

𝑐2

𝜕2

𝜕𝑡2
𝜒 2 𝐸𝐸 + 𝜒 3 𝐸𝐸𝐸 + ⋯

where 𝐏 = 𝜀0𝜒𝐄
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RELATION BETWEEN ELECTRIC POLARIZATION 
𝑃 AND ELECTRIC FIELD VECTOR 𝐸
Relation between 𝑷 and 𝑬

𝑃 𝑟, 𝑡 = 𝜀0 න

−∞

∞

𝜒 𝑟, 𝑡 − 𝑡′ 𝐸 𝑟, 𝑡′ d𝑡′

where 𝜒 is the linear susceptibility which is in general a second-rank tensor but a 

scalar for an isotropic medium such as silica glass.

Dimensionless proportionality constant, electric susceptibility 𝜒 , indicates the 

degree of polarization of a dielectric material in response to an applied electric 

field. The greater the electric susceptibility 𝜒, the greater the ability of a material to 

polarize in response to the field, and thereby reduce the total electric field 𝐸 inside 

the material (and store energy). It is in this way that the electric susceptibility 𝜒 in 

fluences the electric permittivity 𝜀 of the material.
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WAVE EQUATION

From Lecture 3:

∇ × ∇ × 𝐸 = −
1

𝑐2

𝜕2𝐸

𝜕𝑡2
− 𝜇0

𝜕2𝑃

𝜕𝑡2

where 𝑐 = 𝜇0𝜀0

∇ × ∇ × 𝐸 = ∇ ∇ × 𝐸 − ∇2𝐸 = −∇2𝐸
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THE NONLINEAR SCHRODINGER EQUATION
For the simplification, few assumptions will be made:

▪ The waveguide is a single mode.

▪ The material is perfectly transparent and the wavelength is far away from any material 
resonances.

▪ All scattering effects in the waveguide are neglected.

▪ The amplitude of the considered wave packet changes very slowly with respect to its 
carrier.

▪ The field strength of the applied field is, compared to the inner atomic field, relatively 
small.

▪ The fields are linearly polarized in the same direction and the polarization status 
remains the same during the propagation.

▪ The nonlinearity has no influence on the field components perpendicular to the 
propagation direction.

7



THE NONLINEAR SCHRODINGER EQUATION

Under this simplifications, the quasi-monochromatic propagating wave is (c.c. is 

complex conjugate) propagating in 𝑧 direction:

𝐸 =
1

2
෠𝐸 𝑟 𝑒𝑗 𝑘𝑧−𝜔𝑡 + 𝑐. 𝑐.

The slowly varying envelope, 𝐸(𝑟), consists of two parts: one in the propagation 

direction (longitudinal, 𝐴(𝑧) ) and perpendicular to the propagation direction 

(transverse, 𝐹 𝑟, 𝜑 ) as ෠𝐸 𝑟 = 𝐹 𝑟, 𝜑 𝐴(𝑧)

In fiber, the intensity decreasing quadratically with an increase of the radius 𝑟 and 

defined as: 𝐼 =
1

2
𝜀0𝑐𝑛 ෠𝐸

2
 and the power is

𝑃 = ඵ 𝐼 ∙ 𝑟 d𝑟d𝜑
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THE NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrodinger equation (NSE) can be represented as:

𝑗
𝜕𝐵

𝜕𝑧
= −𝛾 𝐵 2𝐵 +

𝑘2

2

𝜕2𝐵

𝜕𝑇2

The first term on the right side describes the influence of the nonlinearity on the 

pulse, whereas the second term can be addressed to the linear effect of dispersion 

in the waveguide.

In case that the absorption in the material is included

𝑗
𝜕𝐵

𝜕𝑧
+ 𝑗

𝛼

2
𝐵 = −𝛾 𝐵 2𝐵 +

𝑘2

2

𝜕2𝐵

𝜕𝑇2

where 𝐵 is the amplitude envelope, 𝑇 is a moving frame and 𝛼 is the attenuation 

constant.
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DISPERSION AND NONLINEAR LENGTH

Assume the time scale is normalized to the pulse width (𝜏 = Τ𝑇 𝜏0). The normalized 

amplitude (𝐴) is defined as:

𝐵 𝑧, 𝜏 = 𝑃𝐴(𝑧, 𝜏)

The NSE becomes

𝑗
𝜕𝐴

𝜕𝑧
= −𝛾𝑃 𝐴 2𝐴 + sgn 𝑘2

𝑘2

2𝜏0
2

𝜕2𝐴

𝜕𝜏2

where sgn = ±1 describes the sign of the dispersion parameter 𝑘2.

The dispersion length can be written as

𝐿𝐷 =
𝜏0

2

𝑘2
=

𝜏0
22𝜋𝑐

𝐷 𝜆2

where 𝐷 is the dispersion parameter.
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DISPERSION AND NONLINEAR LENGTH

The nonlinear length is

𝐿NL =
1

𝛾𝑃

The NSE becomes

𝑗
𝜕𝐴

𝜕𝑧
= −

1

𝐿NL
𝐴 2𝐴 +

sgn 𝑘2

2𝐿𝐷

𝜕2𝐴

𝜕𝜏2
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DISPERSION AND NONLINEAR LENGTH

▪ For a large Nonlinear Length – the fiber 

behaves linearly.

▪ It happens when the nonlinearity or the power 

is small.

▪ For a large dispersion length – the broadening 

of the pulses can be neglected.

▪ It happens when the initial pulse is large or the 

dispersion is small.
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Figure 1: Nonlinear and dispersion 

length for a standard single mode fiber 

at a wavelength of 1.55 µm [1].



FIBER NONLINEARITIES

The response of any dielectric to light becomes nonlinear for intense 

electromagnetic fields, and optical fibers are no exception. On a fundamental level, 

the origin of nonlinear response is related to the anharmonic motion of bound 

electrons under the influence of an applied field. As a result, the total polarization P 

induced by electric dipoles is not linear in the electric field E, but satisfies the more 

general relation

𝐏 = 𝜀0 𝜒 1 𝐄 + 𝜒 2 𝐄𝐄 + 𝜒 3 𝐄𝐄𝐄 + ⋯ = 𝐏L + 𝐏NL
(2)

+ 𝐏NL
(2)

+ ⋯

where 𝜀0 is the vacuum permittivity and 𝜒 𝑗  is 𝑗th order susceptibility.

• As SiO2 is a symmetric molecule, 𝜒 2  vanishes for silica glasses.

• The electric-quadrupole and magnetic-dipole moments can generate weak 

second-order nonlinear effects.
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FIBER NONLINEARITIES

The lowest-order nonlinear effects in optical fibers originate from the third-order 

susceptibility 𝜒 3 , which is responsible for phenomena such as third-harmonic 

generation, four-wave mixing, and nonlinear refraction. Most of the nonlinear effects 

in optical fibers therefore originate from nonlinear refraction, a phenomenon 

referring to the intensity dependence of the refractive index.

෤𝑛 = 𝑛0 + 𝑛2𝐼 = 𝑛0 + ത𝑛2 𝐸 2

where ത𝑛2 is the nonlinear-index coefficient defined as

ത𝑛2 =
3

8𝑛
 ℜ{𝜒𝑥𝑥𝑥𝑥

3
}
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SELF- AND CROSS-PHASE MODULATION

Self-phase modulation (SPM) and cross-phase modulation (XPM or CPM) are two of 

the most important nonlinear effects in optical telecommunications. Both effects lead 
to a phase alteration of the pulses and are frequently called carrier-induced phase 

modulation (CIP). The alteration of the phase leads to a change of the pulse 

spectrum.

▪ In the case of SPM, the pulse changes its spectrum due to its own intensity; it will be 

broadened. The broadening causes, of course, a degradation of system 

performance

▪ The XPM is similar to the SPM but the origin of the spectral broadening of the 

pulses are other pulses propagating at the same time in the waveguide; they will 

mutually influence each other.
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SELF-PHASE MODULATION

In the case of SPM, the pulse changes its spectrum due to its own intensity; it will be 

broadened. Together with the dispersion of the material, this spectral broadening 

can lead to an alteration of the temporal width of the pulse.
𝜕𝐵

𝜕𝑧
= 𝑗𝛾𝑃𝐵

The envelope of the wave (𝐵) after distance 𝑧 is:

𝐵 𝑧 = 𝐵 0 exp 𝑗𝛾𝑃𝑧

Due to Eq. (15), the slowly varying amplitude 𝐵(𝑧) changes its phase during the 

propagation in the waveguide and the phase alteration is proportional to the 

propagation distance 𝑧. The total transmission in the fiber:

𝐸 𝑧, 𝑡 =
1

2
෠𝐸 𝑟, 0 𝑒𝑗 𝛾𝑃+𝑘 𝑧−𝜔𝑡 + 𝑐. 𝑐.
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SELF-PHASE MODULATION

Using 𝐼 = Τ𝑃 𝐴eff and 𝛾 = Τ𝑘0𝑛2 𝐴eff, the phase 

of the wave can be represented as:

Φ 𝑧, 𝑡 = 𝑛0 + 𝑛2𝐼 𝑘0𝑧 − 𝜔𝑡

The pulse modulates, due to the intensity-

dependent refractive index, its own phase 

with its intensity. Hence, the name self-phase 

modulation is used to describe this 

phenomenon.
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Figure 2: Electric field of a Gaussian pulse 

at the fiber input (top) and phase shift due 

to SPM (bottom) [1].



SELF-PHASE MODULATION

The temporal derivation of the phase corresponds to the frequency of the wave. 

Hence, the frequency is:

𝜔 𝑧 = −
𝜕Φ 𝑧, 𝑡

𝜕𝑡
= 𝜔0 − 𝑛2𝑘0

𝜕𝐼

𝜕𝑡
𝑧

Therefore, it will decrease if the pulse intensity increases, reach the original 

frequency in the pulse maximum, and will increase for the decreasing wing.

18

(18)



SELF-PHASE MODULATION

Due to SPM, the leading edge is stretched. The peak maintains its original frequency 

and the tailing edge is compressed.

Figure 3: Electric field of a pulse at the fiber input and output. Due to the SPM in the 

fiber the frequency of the pulse is changed. Note that the pulse here propagates 

from the left to the right [1].
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SPM'S IMPACT ON COMMUNICATION 
SYSTEMS
The nonlinear part of the phase from Eq. (17) is

ΦNL = 𝑛2𝐼𝑘0𝑧

using 𝛾 = Τ𝑘0𝑛2 𝐴eff,we get the phase change as function of the length. Considering 

the influence of attenuation

ΦNL = 𝛾𝑃𝐿eff

where 𝐿eff =
1−exp(−𝛼𝑧)

𝛼
 and 𝛼 is units of km-1.
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SPM'S IMPACT ON COMMUNICATION 
SYSTEMS
▪ For an input power of 1 W, one yields a phase shift of Τ𝜋 2 after a distance of ~1.2 km 

in a standard single mode fiber (nonlinearity coefficient 𝛾 = 1.3 W−1km−1 , 

attenuation 𝛼 = 0.2 dB/km).

▪ For the same phase shift, an effective length of 1200 km is required in systems with 

an input power of 1 mW.

▪ This is much more than the limiting value of the effective length in single mode 

fibers (~22 km).

▪ If no optical amplifiers are present in the system it follows a phase shift of at most 

~0.03 rad for a signal power of 1 mW.

21



SPM'S IMPACT ON COMMUNICATION 
SYSTEMS
▪ If optical amplifiers are present in the system, 

the relations are completely different.

▪ The effective length depends on the number 

of amplifiers.

▪ If the system is long enough small input 

powers can cause a strong phase shift.

22

Figure 4: Maximum phase shift for an 

unamplified system versus input power. 

(Attenuation constant 𝛼 = 0.2 dB/km , 

nonlinearity coefficient 𝛾 = 1.3 W−1km−1 

[1].



SPM'S IMPACT ON COMMUNICATION 
SYSTEMS
An alteration of the phase causes an alteration of the pulse frequency as well. The 

spectral broadening of the pulse at the fiber output is

∆𝐵 =
𝜕ΦNL

𝜕𝑡
= 𝛾𝐿eff

𝜕𝑃

𝜕𝑡

The spectral broadening depends not only on the effective length but on the 

temporal alteration of the power of the input pulse as well. Short pulses are much 

more affected than long pulses due to SPM.
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SPM'S IMPACT ON COMMUNICATION 
SYSTEMS

Figure 5: Spectral broadening of a pulse with temporal durations of 25 ps after a 

propagation distance of 2 and 22 km (effective length) in a standard single mode 

fiber [1].
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SPM'S IMPACT ON COMMUNICATION 
SYSTEMS

Figure 6: Spectral broadening of two pulses with temporal durations of 25 and 100 ps. 

The propagation distance in a standard single mode fiber is 22 km (effective length) 

[1].
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CROSS-PHASE MODULATION

Cross-phase modulation (XPM, or sometimes, CPM) is similar to SPM, but contrary to 

SPM, different channels can interact with each other via the alteration of the intensity 

dependent refractive index.
𝜕𝐵

𝜕𝑧
= 𝑗𝛾 𝐵 2𝐵

For simplicity, only two channels propagating at the same time in the fiber will be 

considered. The entire field consists of two parts

𝐵 = 𝐵1 exp[𝑗(𝑘1𝑧 − 𝜔1𝑡)] − 𝐵2 exp[𝑗(𝑘2𝑧 − 𝜔2𝑡)]

therefore

𝑗𝛾 𝐵 2𝐵 = 𝑗𝛾𝐵𝐵∗𝐵

where 𝐵∗ is the complex conjugate of 𝐵.
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CROSS-PHASE MODULATION

These terms can be separated by the arguments of the exponential functions:
𝜕𝐵𝑚

𝜕𝑧
= 𝑗𝛾 𝐵𝑚

2 + 2 𝐵𝑛
2 𝐵𝑚 + 𝐵𝑚

2𝐵𝑛
∗𝑒𝑗 ∆𝑘𝑧−∆𝜔𝑡

where 𝛾 =
ഥ𝜔𝑛2

𝑐𝐴eff
 is the nonlinearity constant and ഥ𝜔 is the mean frequency.

Assuming that the fiber shows dispersion and therefore, the phase matching 

condition is not fulfilled and the generation of mixing frequencies is suppressed.
𝜕𝐵𝑚

𝜕𝑧
= 𝑗𝛾 𝐵𝑚

2 + 2 𝐵𝑛
2 𝐵𝑚

Assuming that the brackets is constant for a distance 𝑧 and 𝑚 = 1.

𝐵1 𝑧 = 𝐵1 𝑧 exp 𝑗𝛾 𝑃1 + 2𝑃2 𝑧
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CROSS-PHASE MODULATION

Hence, the phase of the first wave is altered due to its own power - this is the SPM 

effect - but at the same time the power of the other wave has an influence on the 

phase of wave 1 as well. The influence is twice that of SPM.

The total refractive index in the fiber is:

𝑛ges = 𝑛0 + 𝑛2𝐼1 + 2𝑛2𝐼2

The second wave alters the refractive index experienced by the other wave via its 

intensity and hence, changes the phase of the other wave. The phase of the wave is:

Φ =
𝑛2

𝐴eff
𝑃1 + 2𝑃2 + 𝑛0 𝑘01𝑧 − 𝜔1𝑡
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CROSS-PHASE MODULATION

The nonlinear part caused by XPM can be written as:

Φ1XPM = 2
𝑛2

𝐴eff
𝑃2𝑘01𝑧 = 2𝛾𝑃2𝑧

The frequency change at the output of a fiber with length 𝐿 is:

∆𝐵XPM = 2𝛾𝐿
𝜕𝑃2

𝜕𝑡

When the attenuation is considered 𝐿 = 𝐿eff. The XPM spectral broadening is twice 

compared to SPM spectral broadening (compare to Eq. (21)).
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XPM AND SPM EFFECTS

Figure 7: Spectral broadening of a pulse due to SPM and XPM in a standard single 

mode fiber after a propagation distance of 22 km (effective length). Both effects are 

considered independently [1].
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SPM AND XPM

A common method for studying the impact of SPM and XPM uses a numerical 

approach. The equation

𝜕𝐵

𝜕𝑧′
+

𝑗𝛽2

2

𝜕2𝐵

𝜕𝑡′2 +
𝛽3

6

𝜕3𝐵

𝜕𝑡′3 = 0

(𝛽2 is the GVD coefficient and 𝛽3 is related to the dispersion slope 𝑆) can be 

generalized to include the SPM and XPM effects by adding a nonlinear term.

The resulting equation is known as the nonlinear Schrodinger equation and has the 

form:

𝜕𝐵

𝜕𝑧
+

𝑗𝛽2

2

𝜕2𝐵

𝜕𝑡2
= −

𝛼

2
𝐵 + 𝑗𝛾 𝐵 2𝐵

where we neglected the third-order dispersion and added the term containing to 

account for fiber losses.
31
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XPM'S IMPACT ON COMMUNICATION 
SYSTEMS
▪ On the other hand, modern WDM systems consist of a huge number of channels at 

different carrier wavelengths.

▪ Each wavelength delivers a contribution to the nonlinear refractive index that acts back 
on the distinct channels.

▪ Hence, all channels can influence each other via their intensities.

The equations for 𝑀 channels are

𝜕𝐵1

𝜕𝑧
= 𝑗𝛾 𝐵1

2 + 2 ෍

𝑖=2

𝑀

𝐵𝑖
2 𝐵1

⋮

𝜕𝐵𝑀

𝜕𝑧
= 𝑗𝛾 𝐵𝑀

2 + 2 ෍

𝑖=1

𝑀−1

𝐵𝑖
2 𝐵𝑀
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XPM'S IMPACT ON COMMUNICATION 
SYSTEMS
If all channels coincide temporally, the total refractive index in the first channel of a 
WDM system with 𝑀 channels experiences is

𝑛ges = 𝑛0 + 𝑛2𝐼1 + 2 ෍

𝑖=2

𝑀

𝑛2𝐼𝑖

and the phase of wave 1 is

Φ1 =
𝑛2

𝐴eff
𝑃1 + 2 ෍

𝑖=2

𝑀

𝑃𝑖 + 𝑛0 𝑘0𝑧 − 𝜔𝑡

▪ The influence of XPM is much more important than the influence of SPM in WDM 
systems.

▪ However, XPM is the most important factor that determines the transmission 
capacity of optical fibers.

33
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XPM'S IMPACT ON COMMUNICATION 
SYSTEMS
▪ The influence of XPM should be considered in phase-modulated systems in 

particular because an arbitrary phase alteration leads directly to a deterioration of 

the signal to noise ratio.

▪ If the systems are intensity modulated, the XPM has no influence on the system 

performance if the dispersion is neglected because only a phase modulation takes 

place.
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XPM'S IMPACT ON COMMUNICATION 
SYSTEMS
The red pulse was injected into the fiber 100 ps 
before the blue one. For convenience, the influence of 
dispersion and nonlinearity to the pulse width should 
be neglected.

In a standard single mode fiber, the propagation of 
pulses with a carrier wavelength above 1.3 µm is 
determined by the anomalous dispersion. The GVD 
parameter, and therefore the group velocity, 
decreases with increasing wavelength. Hence, the 
blue pulse injected into the fiber after the red one 
moves faster. After a distance of 3.5 km, both pulses 
overlap halfway and overlap completely after 5.9 km. 
If the pulses propagate further, they walk apart and 
after a distance of 12 km, they are again completely 
separated. But now the blue pulse is in front of the red 
one.

35

New

Need to check

Gaussian pulses with a temporal width of 41.6 ps 

(FWHM) and a carrier wavelength of 1.577 and 

1.578 µm for different propagation distances in a 

standard single mode fiber 𝐷 = 17 𝑝𝑠/(𝑛𝑚 ∙ 𝑘𝑚) [1]



XPM'S IMPACT ON COMMUNICATION 
SYSTEMS
If the interaction length between the pulses is defined as the distance between the beginning and 
the end of the overlap at half the maximum power, then the time for the interaction is 2𝜏FWHM, with 
𝜏FWHM as the FWHM pulse width. The interaction length is

𝐿I =
2𝜏FWHM

𝐷∆𝜆

where 𝐷 is the dispersion parameter and ∆𝜆 is the difference between the carrier wavelengths of 
the pulses.

For example, two adjacent pulses of the C-band (channel spacing 50 GHz, 𝜆1 = 1544.92 𝑛𝑚, 𝜆2
= 1544.53 𝑛𝑚) with a FWHM width of 25 ps:

▪ A standard single mode fiber 

𝐷 = 17
𝑝𝑠

𝑛𝑚 ∙ 𝑘𝑚
 →  𝐿I = 7.54 𝑘𝑚

▪ A nonzero dispersion-shifted fiber

𝐷 = 2
𝑝𝑠

𝑛𝑚 ∙ 𝑘𝑚
 →  𝐿𝐼 = 64.1 𝑘𝑚
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FOUR-WAVE MIXING (FWM)

Four-wave-mixing (FWM), or sometimes four-

photon-mixing (FPM), describes a nonlinear 

optical effect at which four waves or photons 

interact with each other due to the third order 

nonlinearity of the material.

As a result, new waves with sum and 

difference frequencies are generated during 

the propagation in the waveguide.

37

Figure 8: Energy diagram of Four-Wave 

Mixing (FWM) [1].



FOUR-WAVE MIXING (FWM)

If three optical waves with frequencies 𝑓𝑖, 𝑓𝑗 and 𝑓𝑘 are propagating in the fiber, they can 
interact via the third order susceptibility 𝜒(3) of the material and new waves with the 
frequencies

𝑓𝑖,𝑗,𝑘 = 𝑓𝑖 + 𝑓𝑗 − 𝑓𝑘

can be generated by the FWM process, where 𝑖, 𝑗 and 𝑘 can have the values 1, 2, and 3.

▪ Three elements arranged in three classes can lead to 27 possible variations.

▪ If the third frequency (𝑓𝑘) in equals the first, or second (𝑓𝑖 , 𝑓𝑗) frequency no new 
frequency is generated, resulting in 𝑓𝑖 or 𝑓𝑗 , respectively.

▪ If the first two frequencies are changing their places as well, no new frequencies are 
generated.

▪ If 𝑘 ≠ 𝑖, 𝑗, 𝑘, 9 residual combinations are left from the 27 variations.

Therefore, three waves with different frequencies are able to generate 9 new waves.
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FOUR-WAVE MIXING (FWM)

The table below shows the 

possible combinations for the 

generation of new waves due to 

the FWM process for channels 

with equidistant wavelength (left 

column) and frequency spacing 

(right column).
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𝑖, 𝑗,𝑘
𝝀𝒊,𝒋,𝒌/𝐧𝐦

(∆𝝀 = 𝟏 𝐧𝐦)

𝒇𝒊,𝒋,𝒌/𝐓𝐇𝐳

(∆𝒇 = 𝟏𝟐𝟎 𝐆𝐇𝐳)

1,1,2 1557.001 189.99

1,1,3 1576.005 189.87

1,2,3 1577.002 189.99

1,3,2 1578.999 190.23

2,2,1 1580.001 190.35

2,2,3 1578.001 190.11

2,3,1 1581.003 190.47

3,3,1 1582.005 190.59

3,3,2 1581.001 190.47



FOUR-WAVE MIXING (FWM)

The frequency spacing depends on the 

wavelength. Therefore, if the channels 

have an equidistant wavelength 

spacing, their frequency differences 

are not completely equal.

If the original channels have an equal 

frequency spacing, the new generated 

waves will have the same spacing and 

a large number of them falls exactly 

into the original channels.

40

Figure 9: (a) Mixing frequencies due to FWM 

for an equal frequency spacing between the 

original channels. (b) Mixing frequencies due 

to FWM for equidistant wavelength spacing [1].



FOUR-WAVE MIXING (FWM)

For 𝑁 original channels, the number of 

possible mixing products is

𝑀 =
𝑁3 − 𝑁2

2

If the intensities of the new generated 

waves are strong enough, they can 

interact again with each other or with 

the original channels and will produce 

additional mixing products.

41

Figure 10: Number of possible mixing products 

due to FWM versus the number of channels [1].

(38)



FOUR-WAVE MIXING (FWM)

▪ The effectiveness of the generation of new mixing products depends strongly on 

the phase matching condition between the distinct waves. In a dispersive material, 

a larger frequency spacing results in a higher refractive index difference, and 

therefore, a higher phase mismatch between the channels. Hence, the FWM 

efficiency decreases for channels that are farther away.

▪ As a result, only adjacent channels generate mixing products effectively in 

dispersive fibers, leading to a decrease of the signal to noise ratio in these 

channels. The intensity of the mixing products between channels farther away is 

negligibly small.
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MATHEMATICAL DESCRIPTION OF FWM

If the attenuation in the fiber is neglected as well, the NSE becomes

𝑗
𝜕𝐵

𝜕𝑧
= −𝛾 𝐵 2𝐵

The superposition propagating through the fiber is represented by

𝐵 = 𝐵1𝑒𝑗(𝑘1𝑧−𝜔1𝑡) + 𝐵2𝑒𝑗(𝑘2𝑧−𝜔2𝑡) + 𝐵3𝑒𝑗(𝑘3𝑧−𝜔3𝑡) + 𝐵4𝑒𝑗(𝑘4𝑧−𝜔4𝑡)

For convenience, the consideration is restricted to the case

𝜔4 = 𝜔1 + 𝜔2 − 𝜔3

where 𝜔1 and 𝜔2 are called the pump waves whereas 𝜔3 and 𝜔4 are called the idler 

waves.
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MATHEMATICAL DESCRIPTION OF FWM

In analogy to stimulated Raman scattering (SRS), the lower sideband can be seen as 

the Stokes and the higher generated sideband as the anti-Stokes wave.

Figure 11: Position and notation of the distinct frequencies for 𝜔4 = 𝜔1 + 𝜔2 − 𝜔3 [1].
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MATHEMATICAL DESCRIPTION OF FWM

There are two special cases:

1) If all three original waves have the same frequency (𝜔1 = 𝜔2 = 𝜔3), the process 

is called a degenerate FWM where the new generated mixing product has the 

same frequency 𝜔. It can be distinguished by its propagation direction.

2) If only two of the three waves are equal (𝜔1 = 𝜔2 ≠ 𝜔3), the process is called 

partly degenerate. The frequency of the mixing product is lower than the pump 

frequencies by ∆𝜔.

The second case is important for applications like the FWM wavelength converter 

and the parametric amplifier.
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MATHEMATICAL DESCRIPTION OF FWM

A large number of terms can be obtained:

▪ 𝐵𝑖
2𝐵𝑖 with 𝑖 = 1,2,3,4 - responsible for the self phase modulation of the waves.

▪ 𝐵𝑖
2𝐵𝑗 with 𝑖 ≠ 𝑗 - responsible for the cross-phase modulation of the waves.

All other terms are responsible for FWM but an effective generation of new waves 

can only happen if the phase matching condition is fulfilled.

The distinct FWM term

𝜔1 + 𝜔2 = 𝜔3 + 𝜔4

where 𝜔𝑖 = 2𝜋𝑓𝑖
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MATHEMATICAL DESCRIPTION OF FWM

𝑓1 can be obtain from few combinations: 2𝑓3 + 𝑓4 − 𝑓2, 2𝑓2 − 𝑓4 and 𝑓2 + 𝑓3 − 𝑓1. NSE 

for the first pump wave (𝑓1) in the fiber:

𝜕𝐵1

𝜕𝑧
= 𝑗𝛾 𝐵1

2 + 2 ෍

𝑖≠1

𝐵1
2 𝐵1 + FWM

where 𝑖 = 1,2,3,4 and

FWM = 2𝐵3𝐵4𝐵2
∗𝑒𝑗∆𝑘3,4,−2,−1𝑧 + 2𝐵2𝐵3𝐵1

∗𝑒𝑗∆𝑘2,3,−1,−1𝑧 + 2𝐵2
2𝐵4

∗𝑒𝑗∆𝑘2,2,−4,−1𝑧

The distinct amplitudes are normalized to the input power of the pump wave

𝑃1: 𝐵𝑚 = 𝑃1 ∙ 𝐴𝑚

▪ The first term inside the brackets responsible for SPM.

▪ The second term describes the effect of XPM.

47

(43)

(44)



MATHEMATICAL DESCRIPTION OF FWM

Figure shows the conditions for the 

four waves in an optical fiber if the 

phases between the distinct waves are 

matched.

48

Figure 12: Power exchange between pump ( 𝐴1
2,

𝐴2
2 ), signal ( 𝐴3

2 ), and idler waves ( 𝐴4
2 ) 

during the propagation in the fiber [1].



MATHEMATICAL DESCRIPTION OF FWM

▪ If the intensity of the pump waves 

increases the behavior differs.

▪ In optical telecommunications, relatively 

small input powers propagate in the 

fibers and only the periodic behavior 

will be seen.

49

Figure 13: Mixing product versus fiber 

length for different input powers 𝑃𝑖 [1].



PHASE MATCHING

In FWM, new waves with new frequencies are generated, contrary to SPM and XPM 

where only the phases are changed. the rules of conservation of energy and 

momentum must be fulfilled, leading to the phase matching condition.

Neglecting the phase alteration by SPM and XPM, We obtain
𝜕𝐴4

𝜕𝑧
= 2𝑗𝛾𝑃1𝐴1𝐴2𝐴3

∗𝑒𝑗∆𝑘1,2,−3,−4𝑧

Assuming that the amplitudes of the pump waves remain nearly the same during 

propagation due to phase mismatch.

Integrating from 𝑧 = 0 to 𝑧 = 𝑙 and 𝐴4 = 0 in the fiber input

𝐴4 =
2𝛾𝑃1

∆𝑘1,2,−3,−4
𝐴1 0 𝐴2 0 𝐴3

∗ 0 𝑒𝑗∆𝑘1,2,−3,−4𝑙 − 1
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PHASE MATCHING

By using sin Τ𝑥 2 = Τ(1 − cos 𝑥) 2, the intensity change of the idler depends on the 

propagation distance in the fiber.

𝐼4~𝐴4𝐴4
∗~𝐶𝐼1𝐼2𝐼3𝑙2

sin Τ∆𝑘1,2,−3,−4𝑙 2

Τ∆𝑘1,2,−3,−4𝑙 2

2

where 𝐼𝑛 is the intensity of the waves, 𝐶 is the sum of all constant and ∆𝑘1,2,−3,−4 is the 

phase mismatch. The phase matching condition is

∆𝑘1,2,−3,−4 = 𝑘1 + 𝑘2 − 𝑘3 − 𝑘3

 =
1

𝑐
𝑛1𝜔1 + 𝑛2𝜔2 − 𝑛3𝜔3 − 𝑛4𝜔4

 = 2𝜋
𝑛1

𝜆1
+

𝑛2

𝜆2
−

𝑛3

𝜆3
−

𝑛4

𝜆4
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PHASE MATCHING

▪ The intensity of the idler increases 

quadratically with the length of the 

waveguide if the phases are matched 

(∆𝑘 = 0).

▪ If the phases are not matched the 

intensity shows a periodic function 

along the fiber.
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Figure 14: Intensity of the idler wave versus 

fiber length for phase matching and a phase 

mismatch between the waves [1].



PHASE MATCHING

The coherence length for FWM is 

𝐿coh =
𝜋

∆𝑘1,2,−3,−4

The origin of the phase mismatch lies in the frequency dependence of the refractive 

index and the dispersion.

Table 1: Coherence length in fused silica for different average wavelengths and 

channel spacings

53

(49)

∆𝒇  [GHz] 𝐿coh 1.3 𝜇𝑚   [m] 𝐿coh 1.55 𝜇𝑚   [m] 𝐿coh 1.6 𝜇𝑚   [m]

1000 28 2.8 2.3

100 3293 286 233

10 13304 1144 1144

1 33557972 2863923 2338930



PHASE MATCHING

▪ The refractive index difference and 

therefore the phase mismatch is weak for 

a small channel spacing.

▪ Large coherence lengths for rather large 

channel spacings are possible in the 

range of the fibers zero dispersion.
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Figure 15: Phase mismatch against the 

channel spacing in fused silica for an average 

wavelength of 1600 nm (L-band), 1550 nm (C-

band) and 1300 nm (S-band) [1].



PHASE MATCHING

▪ The intensity in the fiber increases until it 

reaches a maximum at the coherence 

length.

▪ It decreases until the fiber length 

corresponds to two times the coherence 

length.
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Figure 16: Normalized idler intensities for 

a 4 km fiber when the attenuation is 

neglected (channel spacing = 50 GHz) [1].



PHASE MATCHING COMPENSATION

▪ The FWM not only leads to a degradation of the system performance, but it can 

also be exploited for a number of applications as well. In this case, the phase 

mismatch has to be compensated.

▪ The easiest method for a compensation is using only small channel spacings but 

this method is limited due to the spectral width of the distinct channels.

▪ Birefringence is a possibility for phase matching. However, the refractive index 

difference in standard optical fibers is too small to compensate and also arbitrary. 

On the other hand, the birefringence is constant in polarization-maintaining fibers 

and the refractive index difference is much higher than in standard single mode 

fibers.

▪ The most often used method for phase mismatch compensation is the introduction 

of devices with a very small dispersion in the required wavelength range.
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FWM'S IMPACT ON COMMUNICATION 
SYSTEMS
▪ The advantages of DSF relating to their dispersion properties lead to a broad 

insertion of these fibers for high bit-rate transmission systems. On the other hand, 

the dispersion advantage is a disadvantage in relation to the FWM. Hence, the 

incorporation of WDM into these systems is rat her difficult.

▪ The main effect that is responsible for the degradation of the system performance 

in WDM systems due to FWM is the coherent superposition between the original 

and the new generated waves at the receiver.
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FWM'S IMPACT ON COMMUNICATION 
SYSTEMS
▪ A WDM system consisting of 10 

channels with equal frequency spacing 

can generate 450 new waves in 28 

frequency slots.

▪ For example, the two channels in the 

middle of the WDM band are 

superimposed with 29 new waves.
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Figure 17: FWM products for a 10 channel 

WDM system. The out-of-band products can 

be eliminated by optical filtering [1].



FWM'S IMPACT ON COMMUNICATION 
SYSTEMS
The mixing products that fall together with the original WDM channels are 

responsible for a degradation of the system performance.

Assume only one wave generated by the FWM process and one wave in the WDM 

channel, both with the same frequency and wavenumber.

𝐸FWM = ෠𝐸FWM𝑒𝑗(𝑘𝑧−𝜔𝑡+𝜑1) 𝐸WDM = ෠𝐸WDM𝑒𝑗(𝑘𝑧−𝜔𝑡+𝜑2)

where ෠𝐸 is a slowly varying amplitude and 𝜑 is the phase.

The WDM wave superimposes with the FWM wave

𝐸𝑆 = 𝐸FWM + 𝐸WDM = ( ෠𝐸FWM𝑒𝑗𝜑1 + ෠𝐸WDM𝑒𝑗𝜑2)𝑒𝑗(𝑘𝑧−𝜔𝑡)

The photodiode in the receiver can only detect the intensity of the wave.

𝐼𝑆 = ෠𝐸𝑆
2

= ෠𝐸𝑆
෠𝐸𝑆

∗
= 𝐼FWM + 𝐼WDM + 2 𝐼FWM𝐼WDM cos(𝜑1 − 𝜑2)
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FWM'S IMPACT ON COMMUNICATION 
SYSTEMS

𝐼𝑆 = ෠𝐸𝑆
2

= ෠𝐸𝑆
෠𝐸𝑆

∗
= 𝐼FWM + 𝐼WDM + 2 𝐼FWM𝐼WDM cos(𝜑1 − 𝜑2)

▪ The received signal in the photodiode is either reinforced or weakened, 

depending on the relative phase between the original channel and the mixing 

product.

▪ The relative phase depends on the superposition of all the phases of the mixing 

products which fall into each WDM channel.

▪ The bit pattern transmitted in the channels is random and thus the relative phase is 

random as well. As a result, the receivers' output current shows a random fading.

▪ It responsible for an increase of the BER in the system.

60



SOLITONS

▪ The existence of solitons in optical fibers is the result of a balance between the 

group velocity dispersion (GVD) and self-phase modulation (SPM).

▪ The pulse envelope for solitons not only propagates undistorted but also survives 

collisions just as particles do.

▪ Solitons are not only fundamental interest but they have also found practical 

applications in the field of fiber-optic communications.
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THE DISCOVERY OF SOLITONS

▪ In 1834, Scottish engineer and scientist 

John Scott Russell observed a water 

wave propagated in a river over several 

kilometers with a constant velocity and 

without significant change of its shape.

▪ The wave can walk through each other 

and keep their shape after a collision, 

behaves like a particle. Russel called 

them solitary waves.

62
Figure 18: Russel solitons experiment [2].



THE DISCOVERY OF SOLITONS

1834 - Russell observed a solitary wave in a river.

1965 - The word soliton was coined to describe the particle-like properties of pulses 

propagating in a nonlinear medium.

1973 - the existence of solitons in fibers was suggested and demonstrated using 

numerical simulations.

1980 - solitons was observed experimentally in a fiber.

1988 - the potential of solitons was first demonstrated for long-haul communication.
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MATHEMATICAL DESCRIPTION

Optical soliton can be described by the nonlinear Schrodinger equation (NSE)

𝑗
𝜕𝐵

𝜕𝑧
= −𝛾 𝐵 2 +

𝑘2

2

𝜕2𝐵

𝜕𝑇2

Assume that the attenuation is negligible. If the soliton is stable, the linear part must 

be compensated by the nonlinear part. Otherwise, the pulse will spread in time (due 

to linear dispersion) of frequency (due to SPM).

By using the standard NSE and using the following solitons units

𝐴 =
𝐵

𝑃0

 𝜉 =
𝑧

𝐿𝐷
 𝜏 =

𝑇

𝜏0

we get

𝑗

𝐿𝐷

𝜕𝐴

𝜕𝜉
= −𝛾𝑃0 𝐴 2𝐴 +

𝑘2

2𝜏0
2

𝜕2𝐴

𝜕𝜏2
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MATHEMATICAL DESCRIPTION

The ratio between the dispersive and nonlinear length is

𝐿𝐷

𝐿NL
=

𝛾𝑃0𝜏0
2

𝑘2
= 𝑁2

This ratio shows which effect have stronger effect on the fiber. If the ration equal 1, 
dispersive and nonlinear effects can compensate each other and a soliton is formed.

The ratio above and 𝐿NL = Τ1 𝛾𝑃, the NSE can be written as

𝑗
𝜕𝐴

𝜕𝜉
= −𝑁2 𝐴 2𝐴 +

1

2
sgn 𝑘2

𝜕2𝐴

𝜕𝜏2

The standard form of a soliton can only be formed in the anomalous dispersion 
region of the optical fiber

𝑢 = 𝑁𝐴 =
𝛾𝜏0

2𝑃0

|𝑘2|

𝐵

𝑃0 65
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BRIGHT SOLITONS

For anomalous dispersion sgn 𝑘2 = −1 and

𝑗
𝜕𝑢

𝜕𝜉
+ 𝑢 2𝑢 +

1

2

𝜕2𝑢

𝜕𝜏2
= 0

This equation corresponds to the time-dependent, 

dimensionless, nonlinear Schrodinger equation of 

quantum mechanics.

66

Figure 19: Soliton in a nonlinear 

waveguide [1].
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BRIGHT SOLITONS

An unlimited possible solutions can be found but the most important one is solution of a 

hyperbolic secant shape. The input pulse having an initial amplitude of

𝑢 0, 𝜏 = 𝑁sech
𝑇

𝜏0
= 𝑁sech 𝜏 =

2𝑁

𝑒𝜏 + 𝑒−𝜏

where sech = Τ1 cosh.

▪ Fundamental soliton (𝑁 = 1) - shape remains unchanged during the propagation.

▪ Higher order solitons (𝑁 > 1) - follows a periodic pattern when the input shape 

recovers at 𝜉 = Τ𝑚𝜋 2 where 𝑚 is integer.

The soliton period is

𝑧0 =
𝜋

2
𝐿𝐷 =

𝜋

2

𝜏0
2

𝑘2
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BRIGHT SOLITONS

Figure 20: Evolution of the first-order (left column) and third-order (right column) 

solitons over one soliton period. Top and bottom rows show the pulse shape and 

chirp profile, respectively [3].
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BRIGHT SOLITONS

Solving Eq. (58), we get the well-known ‘sech’ solution for the fundamental soliton by 

integrating the NLS equation directly

𝑢 𝜉, 𝜏 = 𝑁sech 𝜏 exp( Τ𝑗𝜉 2)

It shows that the input pulse acquires a phase shift Τ𝜉 2 as it propagates inside the 

fiber, but its amplitude remains unchanged. It is this property of a fundamental 

soliton that makes it an ideal candidate for optical communications. In essence, the 

effects of fiber dispersion are exactly compensated by the fiber nonlinearity when 

the input pulse has a ‘sech’ shape and its width and peak power are related in such a 

way that 𝑁 = 1.
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PULSE EVOLUTION

▪ An important property of optical 

solitons is that they are remarkably 

stable against perturbations. 

▪ The fundamental soliton requires a 

specific shape and a certain peak 

power corresponding to 𝑁 = 1. 

▪ However, it can be created even when 

the pulse shape and the peak power 

deviate from the ideal conditions.
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Figure 21: Evolution of a Gaussian pulse with 

𝑁 = 1 over the range 𝜉 = 0 − 10. The pulse 

evolves toward the fundamental soliton by 

changing its shape, width, and peak power [3].



PULSE EVOLUTION

▪ A similar behavior is observed 

when 𝑁  deviates from 1 (in the 

range of 𝑁 − 0.5 < 𝑁 < 𝑁 + 0.5). 

▪ The pulse width and the peak 

power oscillate initially but 

eventually become constant after 

the input pulse has adjusted itself 

to satisfy the condition 𝑁 = 1.
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Figure 22: Pulse evolution for a ‘sech’ pulse 

with 𝑁 = 1.2 over the range 𝜉 = 0 − 10. The 

pulse evolves toward the fundamental 

soliton (𝑁 = 1) by adjusting its width and 

peak power [3].



PULSE EVOLUTION

▪ Higher intensities in the pulse center create a temporal waveguide by increasing 

the refractive index only in the central part of the pulse.

▪ Such a waveguide supports temporal modes just as the core-cladding index 

difference led to spatial modes.

▪ Most of the pulse energy can still be coupled into that temporal mode even when it 

does not match the temporal mode precisely.

▪ The rest of the energy spreads in the form of dispersive waves.
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DARK SOLITONS

▪ The NSE can be solved even in case on normal 

dispersion (sgn 𝑘2 = 1).

▪ The intensity profile of the resulting solutions 

exhibits a dip in a uniform background, and it 

is the dip that remains unchanged during 

propagation inside the fiber. 

▪ Those solitons are called 'dark solitons’.
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Figure 23: Dark soliton in a waveguide 

with normal dispersion [1].



DARK SOLITONS

The general solution can be written as

𝑢𝑑 𝜉, 𝜏 = 𝜂 tanh 𝜁 − 𝑗𝜅 exp 𝑗𝑢0
2𝜉

and

𝜁 = 𝜂 𝜏 − 𝜅𝜉 , 𝜂 = 𝑢0 cos 𝜙 , 𝜅 = 𝑢0 sin 𝜙

where 𝑢0 is the amplitude of the continuous-wave (CW) background and 𝜙 is an 

internal phase angle in the range 0 to Τ𝜋 2.

An important difference between the bright and dark solitons is that the speed of a 

dark soliton depends on its amplitude 𝜂 through 𝜙. For 𝜙 = 0,

𝑢𝑑 𝜉, 𝜏 = 𝑢0 tanh(𝑢0𝜏) exp 𝑗𝑢0
2𝜉

▪ 𝜙 = 0 - The dip drops to zero. This soliton is called black soliton.

▪ 𝜙 ≠ 0 - The dip does not drop to zero. This soliton is called gray soliton.
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TYPES OF DARK SOLITONS

In contrast with bright solitons which have a constant phase, the phase of a dark 

soliton changes across its width.

Figure 24: (a) Intensity and (b) phase profiles of dark solitons for several values of 

the internal phase 𝜙. The intensity drops to zero at the center for black solitons [3].
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STIMULATED LIGHT SCATTERING

▪ Rayleigh scattering is elastic scattering for which the frequency (or the photon 
energy) of scattered light remains unchanged. By contrast, the frequency of scattered 
light is shifted downward during inelastic scattering.

▪ Two examples of inelastic scattering are Raman scattering and Brillouin scattering. 
Both of them can be understood as scattering of a photon to a lower energy photon such 
that the energy difference appears in the form of a phonon. The main difference 
between the two is that optical phonons participate in Raman scattering, whereas 
acoustic phonons participate in Brillouin scattering. Both scattering processes result in 
a loss of power at the incident frequency. However, their scattering cross sections are 
sufficiently small that loss is negligible at low power levels.

▪ At high power levels, the nonlinear phenomena of stimulated Raman scattering (SRS) 
and stimulated Brillouin scattering (SBS) become important. The intensity of the 
scattered light in both cases grows exponentially once the incident power exceeds a 
threshold value. SRS and SBS were first observed in optical fibers during the 1970s.
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OPTICAL AND ACOUSTIC PHONONS

▪ In physics, a phonon is a collective excitation in a periodic, elastic arrangement of 

atoms or molecules in condensed matter, like solids and some liquids. Often 

designated a quasiparticle, it represents an excited state in the quantum 

mechanical quantization of the modes of vibrations of elastic structures of 

interacting particles. Phonons play a major role in many of the physical properties 

of condensed matter, like thermal conductivity and electrical conductivity. The 

study of phonons is an important part of condensed matter physics.

▪ The concept of phonons was introduced in 1932 by Soviet physicist Igor Tamm. The 

name phonon comes from the Greek word 𝜑𝜔𝜐𝜂 (phone), which translates to sound 

or voice because long-wavelength phonons give rise to sound. Shorter-wavelength 

higher-frequency phonons give rise to heat.
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OPTICAL AND ACOUSTIC PHONONS

Figure 25: Optical phonons arise from out of phase vibrations between neighboring 

atoms within the unit cell, while in phase vibrations give rise to acoustic phonons.
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STIMULATED LIGHT SCATTERING

Even though SRS and SBS are quite similar in their origin, different dispersion 

relations for acoustic and optical phonons lead to the following differences between 

the two in single mode fibers:

1) SBS occurs only in the backward direction whereas SRS can occur in both 

directions.

2) The scattered light is shifted in frequency by about 10 GHz for SBS but by 13 THz 

for SRS (this shift is called the Stokes shift)

3) The Brillouin gain spectrum is extremely narrow (bandwidth < 100 MHz) 

compared with the Raman-gain spectrum that extends over 20-30 THz.

The origin of these differences lies in a relatively small value of the ratio Τ𝑣𝐴 𝑐 ~10−5, 

where 𝑣𝐴 is the acoustic velocity in silica and 𝑐 is the velocity of light.
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RAMAN SCATTERING

▪ The spontaneous Raman scattering was 

discovered, long before the invention of the laser, 

in the year 1924 by the Indian physicist Sir 

Chandrasekhara Raman (knighted 1929).

▪ During a ship travel, after a visit to a congress in 

England, Raman admired the wonderful blue color 

of the Mediterranean sea. He found the origin of 

this effect in the scattering of the sun light at the 

molecules of the water.

▪ For the discovery of the effect, Raman won the 

Nobel Prize in physics in 1930.

80Figure 26: [4]



RAMAN SCATTERING

▪ When photons hit material, they mostly scatter elastically and the energy is 

conserved which called "Rayleigh scattering".

▪ Very small fraction of the photons (1 part in a million) are inelastic scattered and 

the energy is not conserved, this is called "Raman scattering".

Figure 27: Schematics of Raman effect.
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RAMAN SCATTERING

In Raman scattering the molecule is excited to virtual energy level and fall back to 

different energy level. There are two types of Raman scattering:

1) Stokes scattering - when a molecule in the ground state excite and fall to a 

higher energy level, a photon with a lower energy (as a result a longer 

wavelength) is emitted.

2) Anti-Stokes scattering - when a molecule in excited state absorb photon the fall 

to the ground state, a photon with a higher energy (as a result a shorter 

wavelength) is emitted.
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RAMAN SCATTERING

The energy difference is converted to vibration of the molecule atoms.

Figure 28: Diagram for the description of (a) Rayleigh scattering, (b) Stokes 

Scattering and (c) Anti-Stokes Scattering.
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RAMAN SCATTERING SPECTRA

Figure 29: Energy diagram for the description of the Raman Scattering. (a) 

Generation of the Stokes. (b) Generation of the anti-Stokes wave. (c) Distribution of 

the distinct frequencies for the Raman process [1].
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RAMAN SCATTERING SPECTRA

Raman scattering can be used for spectroscopy of vibration that are IR-inactive. The 

Figure below shows a frequency shift due to Raman scattering.

Figure 30: Raman spectrum of ethanol obtained by 532 nm excitation wavelength.
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RAMAN SCATTERING

The Raman coefficient for the pump is slightly different from that for the Stokes wave 

because the pump is frequency-shifted. The Raman gain coefficient in fibers scales, 

to first order, with the inverse pump wavelength. Therefore, the Raman coefficient of 

the pump is related to that of the probe as:

𝑔p =
𝜔p

𝜔s
𝑔s

The intensity is connected to the power via the effective area of the waveguide. The 

Raman gain coefficient depends on the effective area of the fiber, as follows:

𝑔R = 𝑔s ∙ 𝐴eff

where 𝑔R as the Raman gain.
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RAMAN SCATTERING IN OPTICAL FIBERS

Figure 31: (a) Raman gain spectrum of fused silica at 𝜆𝑝 = 1 𝜇𝑚 and (b) energy levels 

participating in the SRS process [3].
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RAMAN SCATTERING IN OPTICAL FIBERS

The spectrum of the Raman gain depends on the decay time associated with the excited 

vibrational state. In the case of a molecular gas or liquid, the decay time is relatively long 

(~1 ns), resulting in a Raman-gain bandwidth of ~1 GHz. In the case for optical fibers, the 

bandwidth exceeds 10 THz. Figure 31 shows the Raman-gain spectrum of silica fibers.

The broadband and multipeak nature of the spectrum is due to the amorphous nature of 

glass. More specifically, vibrational energy levels of silica molecules merge together to 

form a band. As a result, the Stokes frequency 𝜔s can differ from the pump frequency 𝜔p 

over a wide range. The maximum gain occurs when the Raman shift 𝑓R = 𝑓p − 𝑓s is about 

13 THz. Another major peak occurs near 15 THz while minor peaks persist for values of 𝑓𝑅 

as large as 35 THz. The peak value of the Raman gain 𝑔R is about 1∙10-13 m/W at a 

wavelength of 1 µm. This value scales linearly with 𝑓p  (or inversely with the pump 

wavelength 𝜆p), resulting in 𝑔R ≈ 𝑡 ∙ 10−13  Τm W at 1.55 µm.
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RAMAN SCATTERING

At the same time, the relative polarization between pump and Stokes wave has, of course, 
an influence on the efficiency of the Raman scattering as well. The differential equation 
system, describing the intensities of both waves under the influence of Raman scattering 
during its propagation through the medium is then represented by:

𝑑𝐼s

𝑑𝑧
=

𝑔R

𝐾s
𝐼p𝐼s − 𝛼s𝐼s

𝑑𝐼p

𝑑𝑧
= −

𝜔p

𝜔s

𝑔R

𝐾s
𝐼p𝐼s − 𝛼p𝐼p

where 𝐾s is a factor that includes the relative polarization between the pump wave and 
the Stokes wave. The Raman gain has its maximum if 𝐾s = 1, the case where both waves 
have an identical polarization. Standard single mode fibers show birefringence and 
hence, the polarization state of the waves is arbitrary. In this case, the polarization factor 
is 𝐾s = 2.
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STIMULATED RAMAN SCATTERING

Figure 32: Basic differences between (a) spontaneous and (b) stimulated scattering 

[1].
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STIMULATED RAMAN SCATTERING

The Raman scattering process becomes stimulated if the pump power exceeds a 

threshold value. The differences can be explained by the model of harmonic 

oscillator:

▪ The pump wave hits a dipole oscillating with its resonance frequency, an additional 

Stokes wave will be generated by the dipole. The dipole emits this Stokes wave 

with a radiation pattern typical for a dipole that shows a sin 𝜃 dependence.

▪ If the intensity of the pump wave is higher than a particular threshold, then the 

wave scattered at the first dipole is relatively intense. The Stokes wave of the 

following dipole superimposes coherently in the forward direction with the Stokes 

wave of the first dipole.
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THRESHOLD OF RAMAN SCATTERING

The intensities of the pump and Stokes waves under the influence of Raman 

scattering in an optical fiber are described by the differential equation system (64) 

and (65). If, in a first approximation, it is assumed that the intensity depletion of the 

pump due to the Raman interaction is small, the first term on the right side of (65) 

can be neglected.

𝐼p 𝑧 = 𝐼p 0 exp −𝛼p𝑧

Using Equation (64) we obtained

𝐼s 𝑧 = 𝐼s 0 exp
𝑔R

𝐾s
𝐼p 0 𝐿eff − 𝛼s𝑧

where the effective interaction length is

𝐿eff = Τ1 − exp −𝛼p𝑧 𝛼s
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THRESHOLD OF RAMAN SCATTERING

The threshold for stimulated scattering is defined as the input intensity value of the 

pump wave for which the Stokes wave shows a growth in the fiber 𝐼pG . The 

amplification due to the Raman process must exceed the attenuation loss of the 

Stokes wave.
𝑔R

𝐾s
𝐼pG𝐿eff ≫ 𝛼s𝑧

where 𝐼pG = Τ𝑃0G 𝐴eff. The threshold of stimulated Raman scattering (SRS) is

𝑃0G ≫
𝛼s𝐴eff𝐾s

𝑔R
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THRESHOLD OF RAMAN SCATTERING
𝑔R

𝐾s
𝐼pG𝐿eff ≫ 𝛼s𝑧

▪ The intensity of the Stokes wave increases 

very strongly from 0 to 5 km in this range the 

inequality is valid.

▪ If the waves propagate further, the intensity 

of the pump decreases. The growth rate of the 

Stokes wave is smaller and comes to a 

maximum after a propagation distance of 14 

km. After this the attenuation (the right side) 

exceeds the amplification and the Stokes 

wave will decrease.
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Figure 33: Computed power of a pump wave 

and a Stokes wave along a fiber [1].



THRESHOLD OF RAMAN SCATTERING

The forward threshold for Raman scattering in optical fibers is defined as the input 

pump power at which the output powers for pump and Stokes wave are equal. It is 

estimated as:

𝑃th = 16
𝐾s𝐴eff

𝑔R𝐿eff

The Equation is an approximation and is only valid under the conditions that the 

power transfer of the pump to the Stokes wave due to the Raman process is 

negligible, the effective area for pump- and Stokes wavelength are equal, the Raman 

gain can be approximated by a Lorentz function, and the initial Raman signal is 

generated by spontaneous scattering only, i.e., no wave with the Raman frequency 

shift is launched into the fiber.
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THRESHOLD OF RAMAN SCATTERING

▪ The threshold for the stimulated Raman scattering is 𝑃th ≈ 1 W in polarization-

maintaining fibers (𝐾𝑠 = 1) with an effective area of 𝐴eff = 80 μm2, a Raman gain of 

𝑔𝑅 ≈ 7 ∙ 10−14  Τm W, and an effective length of 𝐿eff ≈ 22 km. Whereas, in standard 

single mode fibers, due to the arbitrary distribution of the polarization states of 

pump and Stokes wave (𝐾𝑠 = 2), it has a threshold of 𝑃th ≈ 2 W.

▪ If the intensity of the pump wave is higher than the threshold, the power of the 

Stokes wave at the end of the fiber is greater than the output power of the pump.

▪ Figure below shows the behavior for a pump intensity of 𝐼𝑝 = 1.9 ∙ 1010  ΤW m2 and 

an input power of 𝑃𝑝 = 1.5 W  for a polarization-maintaining fiber ( 𝑔𝑅 ≈ 7

∙ 10−14  Τm W, 𝐴eff = 80 μm2, 𝛼 = 0.2 ΤdB km). The figure shows clearly the intensity 

loss of the pump due to the power transfer to the Stokes wave.
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RAMAN SCATTERING

Figure 34: Pump and Stokes waves in an optical fiber whose pump depletion with the 

parameters above was taken into consideration and an input pump power above the 

threshold far stimulated scattering [1].
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RAMAN SCATTERING

▪ After a propagation distance of 20 km, the Stokes 

wave increases very strongly and the depletion 

of the pump can be no longer neglected.

▪ At a distance of 29 km, the intensity of the Stokes 

exceeds that of the pump.

▪ After a distance of 34.6 km, the pump intensity is 

no longer strong enough to amplify the Stokes 

wave further.

▪ For longer distance, the attenuation in the fiber is 

stronger than the power transfer between pump 

and Stokes wave.
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STIMULATED RAMAN SCATTERING

▪ If 𝐴eff = 50 μm2 and 𝛼 = 0.2 ΤdB km as the representative values, 𝑃th is about 570 

mW near 1.55 µm. It is important to emphasize that Eq. (66) provides an order-of-

magnitude estimate only as many approximations are made in its derivation. As 

channel powers in optical communication systems are typically below 10 mW, SRS 

is not a limiting factor for single-channel lightwave systems. However, it affects the 

performance of WDM systems considerably.

▪ Both SRS and SBS can be used to advantage while designing optical communication 

systems because they can amplify an optical signal by transferring energy to it 

from a pump beam whose wavelength is suitably chosen. SRS is especially useful 

because of its extremely large bandwidth. Indeed, the Raman gain is used routinely 

for compensating fiber losses in modern lightwave systems.
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RAMAN AMPLIFIER

▪ Using Raman amplification, the whole transmission bandwidth of an optical fiber 

can be exploited. For instance, studies proposed the realization of a U-band (1625 – 

1675 nm) amplifier with the Raman effect.

▪ In an optical fiber, multiple Raman processes can be carried out simultaneously. 

This means that a broadband amplification is possible if many pump lasers are 

combined. With such a concept, a Raman amplifier with a gain bandwidth of more 

than 100 nm was demonstrated.

▪ A particular advantage of the Raman amplification is the distributed amplification 

inherent in the process.
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RAMAN AMPLIFIER

Hence, a Raman amplifier can be pumped in forward, backward, or both directions. 

The basic set up of a Raman amplifier pumped backwards is shown in the Figure 

below.

Figure 35: Schematic set-up of a backward-pumped Raman amplifier. [1]
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RAMAN LASER

▪ A Raman laser is, in principle, a Raman amplifier in a resonator cavity. Due to the 

cavity, the threshold of stimulated scattering is decreased.

▪ The Raman scattering in the fiber generates new waves with different frequencies. 

Only the beam, or the wavelength, that hits the tuning mirror perpendicularly 

forms a Fabry-Perot resonator together with the first dichroic mirror.

▪ For compact laser devices, the mirrors can be replaced by a periodic alteration of 

the refractive index in the core of the fiber (fiber Bragg grating).
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RAMAN LASER

Figure 36: Fiber Raman laser with a resonator composed of fiber Bragg gratings 

(FBG = fiber Bragg grating, Yb = Ytterbium, P = Phosphosilicate). (a) Basic set up. (b) 

Diode-pumped fiber laser [1].
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BRILLOUIN SCATTERING

▪ In the 1920s the French physicist Leon Brillouin investigated the scattering of light 

at acoustic waves.

▪ Brillouin scattering is cause by interaction between light and material. Different 

from Raman scattering no vibrations are involved. Density fluctuations of the 

medium are involved that can be seen as acoustic waves or phonons. The density 

fluctuations can be caused by acoustic wave.

▪ SBS decreases the SNR and increases BER (Bit-Error-Rate).

▪ When SBS exceeded the threshold, the signal can not be increased and all excess 

power is scattered back.
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BRILLOUIN SCATTERING

Figure 37: Scattering at a density modulation of an optical medium and 

corresponding vector diagram if the wave moves under an angle (a,b) or in the 

opposite direction to the density modulation (c) [1].
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BRILLOUIN SCATTERING

Brillouin scattering is the result of the deviation of an optical wave on a density 

modulation in the material, caused by an acoustic wave with the sound velocity 𝑣A.

The scattering process requires that energy as well as moment um are conserved 

during the interaction. The momentum conservation requires that the wave vectors 

satisfy:

𝑘S = 𝑘E ± 𝑘A 𝑓S = 𝑓E ± 𝑓A

As expected from the Doppler effect, the frequency of the scattered wave decreases 

if the density modulation moves away and it increases if the density modulation 

comes nearer.
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BRILLOUIN SCATTERING

In our case 𝑘S = 𝑘E ± 𝑘A. Assume that the absolute values of the wave vectors for the 

incident and the scattered wave are approximately equal ( 𝑘S ≈ 𝑘E ),we obtain

𝑘A = 2 𝑘E sin 𝜃

Using 𝑘A = Τ𝜔 𝑣A and 𝑘E = Τ2𝜋𝑛 𝜆E, where 𝑣A is the acoustic velocity, the acoustic 

frequency is given as:

𝑓A =
2𝑣A𝑛

𝜆E
sin 𝜃

▪ In the forward direction, no frequency shift occurs because 𝜃 = 0 and 𝑓A = 0. 

▪ If the incident and the scattered waves propagate in opposite directions, 𝜃 = 0 and 

the frequency shift is at a maximum.
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BRILLOUIN SCATTERING

Figure 38: Quantum mechanical model of Brillouin scattering. One photon of the 

incident wave is annihilated and creates simultaneously a photon of the scattered 

wave and a phonon [1].
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STIMULATED BRILLOUIN SCATTERING

Figure 39: Generation of an acoustic wave due to the superposition between the 

pump wave, propagating in forward direction, and the backscattered Stokes wave 

[1].
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STIMULATED BRILLOUIN SCATTERING

▪ If the intensity of the pump wave is so high that - as in the case of Raman scattering 

- the power transfer to the Stokes wave (generated at an arbitrary point in the 

medium) is higher than the attenuation it will experience, a stimulated process can 

occur. In this case the superposition between the pump wave (propagating in the 

forward direction) and the backscattered Stokes wave will cause a fading with a 

frequency that corresponds to the acoustic wave.

▪ Therefore, the fading leads to an amplification of the acoustic wave. A stronger 

acoustic wave causes a stronger Stokes wave which results in a stronger intensity 

modulation, and so on. Since the pump by itself is responsible for an amplification 

of the effect, the process is called stimulated.
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STIMULATED BRILLOUIN SCATTERING

Stimulated Brillouin scattering is the interaction between the pump wave, the 
generated Stokes wave and the acoustic wave in the fiber.

As a result, the beating term acts as source that increases the amplitude of the sound 
wave, which in turn increases the amplitude of the scattered wave, resulting in a 
positive feedback loop. SBS has its origin in this positive feedback, which ultimately 
can transfer all power from the pump to the scattered wave. The feedback process is 
governed by the following set of two coupled equations:

𝑑𝐼p

𝑑𝑧
= −𝑔B𝐼p𝐼s − 𝛼𝐼p

𝑑𝐼s

𝑑𝑧
= −𝑔B𝐼p𝐼s + 𝛼𝐼s

where 𝐼p and 𝐼s are the intensities of the pump and Stokes fields, 𝑔B is the SBS gain, 

and 𝛼 is the fiber losses.
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STIMULATED BRILLOUIN SCATTERING

For small intensities, the pump intensity depends only on the fiber attenuation:

𝐼p 𝑧 = 𝐼p 0 exp(−𝛼𝑧)

The pump intensity at distance 𝐿 is

𝐼p 𝑧 = 𝐼p 0 න
0

𝐿

exp −𝛼𝑧  𝑑𝑧 =
𝐼p 0

𝛼
1 − 𝑒−𝛼𝐿 = 𝐼p 0 𝐿eff

where 𝐿eff is the effective interaction length.
𝑑𝐼s

𝑑𝑧
= −𝑔B𝐼p 𝑧 + 𝛼 𝐼s

The intensity of stokes wave in distance 𝐿 is

𝐼s 𝐿 = 𝐼s 0 exp −
𝑔B𝑃0𝐿eff

𝐴eff − 𝛼𝐿
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STIMULATED BRILLOUIN SCATTERING

Figure 40: Power of the Stokes wave at the input of a polarization-maintaining fiber 

against the fiber length for two different pump powers [1].
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THE BRILLOUIN GAIN

The Brillouin gain coefficient of a fiber is determined by three important parameters: the 
frequency shift between the pump and Stoke waves (𝑓A), the peak Brillouin gain (𝑔Bmax

) 
and the linewidth of the distribution (∆𝑓A).

The Brillouin gain coefficient has a very narrow bandwidth and its maximum determines 
the frequency shift or the frequency of the acoustic wave. The distribution is 
approximated by a Lorentzian function:

𝑔𝐵 𝑓 =
𝑔Bmax

1 + Τ𝑓 − 𝑓A Τ∆𝑓A 2 2

For pulses with a temporal duration much longer than the phonon lifetime, the maximum 
of the Brillouin gain 𝑔Bmax

 is

𝑔Bmax
=

4𝜋𝑛8𝑝2

𝑐𝜆P
3𝜌𝑓A∆𝑓A

where 𝑝 is the elasto-optic constant and 𝜌 is the material density.
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THE BRILLOUIN GAIN

If the pump pulses are temporally short, their spectrum will be correspondingly 

large and the gain curve merges into a Gaussian distribution:

𝑔𝐵 𝑓 =
𝐶

1 + Τ𝑓 − 𝑓A Τ∆𝑓A 2 2
+ 1 − 𝐶 exp − ln 2

𝑓 − 𝑓A
2

Τ∆𝑓A 2 2
𝑔Bmax
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THE BRILLOUIN GAIN

Figure below shows the Brillouin gain spectra at 𝜆𝑝 = 1.525 μm for three different 

kinds of single-mode silica fibers. Both the Brillouin shift 𝜐𝐵 and the gain bandwidth 

∆𝜐𝐵 can vary from fiber to fiber because of the guided nature of light and the 

presence of dopants in the fiber core. The fiber labeled (a) in Fig. 40 has a core of 

nearly pure silica (germania concentration of about 0.3% per mole). The measured 

Brillouin shift 𝜐𝐵 = 11.25 GHz is in agreement with Eq. (68). The Brillouin shift is 

reduced for fibers (b) and (c) of a higher germania concentration in the fiber core.
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BRILLOUIN-GAIN SPECTRA

Figure 41: Brillouin-gain spectra measured using a 1.525 µm pump for three fibers 

with different germania doping: (a) silica-core fiber, (b) depressed-cladding fiber 

and (c) dispersion-shifted fiber. Vertical scale is arbitrary [3].
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STIMULATED BRILLOUIN SCATTERING

The doublepeak structure for fiber (b) results from inhomogeneous distribution of 

germania within the core. The gain bandwidth is larger than that expected for bulk 

silica (∆𝜐𝐵 ≈ 17 MHz at 𝜆𝑝 = 1.525 μm). A part of the increase is due to the guided 

nature of acoustic modes in optical fibers. However, most of the increase in 

bandwidth can be attributed to variations in the core diameter along the fiber 

length. Because such variations are specific to each fiber, the SBS gain bandwidth is 

generally different for different fibers and can exceed 100 MHz; typical values are 

~50 MHz for 𝜆𝑝 near 1.55 µm.

The peak value of the Brillouin gain in Eq. (75) occurs for Ω = Ω𝐵 and depends on 

various material parameters such as the density and the elasto-optic coefficient. For 

silica fibers 𝑔𝐵 ≈ 5 ∙ 10−11  Τm W. The threshold power level for SBS can be estimated 

by solving Eqs. (69) and (73) and finding at what value of 𝐼𝑝, 𝐼𝑠 grows from noise to a 

significant level.
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STIMULATED BRILLOUIN SCATTERING

The threshold power 𝑃th = 𝐼p𝐴eff, where 𝐴eff is the effective core area, satisfies the 

condition:

Τ𝑔B𝑃th𝐿eff 𝐴eff ≈ 21

where 𝐿eff is the effective interaction length defined as

𝐿eff =
1 − exp(−𝛼𝐿)

𝛼

and 𝛼  represents fiber losses. For optical communication systems 𝐿eff  can be 

approximated by Τ1 𝛼 as 𝛼𝐿 ≫ 1 in practice. Using 𝐴eff = 𝜋𝑤2, where w is the spot 

size, 𝑃th can be as low as 1 mW depending on the values of 𝑤 and 𝛼. Once the power 

launched into an optical fiber exceeds the threshold level, most of the light is 

reflected backward through SBS. Clearly, SBS limits the launched power to a few 

milliwatts because of its low threshold.
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STIMULATED BRILLOUIN SCATTERING

Figure 42: Threshold of stimulated Brillouin scattering versus fiber length in a 

standard single mode fiber with different attenuation (𝐾𝐵 = 2, 𝑔𝐵 = 2 ∙ 10−11 m/W, 

𝐴eff = 80 μm2) [1].
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STIMULATED BRILLOUIN SCATTERING

The preceding estimate of 𝑃th applies to a narrowband CW beam as it neglects the 

temporal and spectral characteristics of the incident light. In a lightwave system, the 

signal is in the form of a bit stream.

For a single short pulse whose width is much smaller than the phonon lifetime, no 

SBS is expected to occur. However, for a highspeed bit stream, pulses come at such a 

fast rate that successive pulses build up the acoustic wave, similar to the case of a 

CWbeam, although the SBS threshold increases. The exact value of the average 

threshold power depends on the modulation format (RZ versus NRZ) and is typically 

~5 mW. It can be increased to 10 mW or more by increasing the bandwidth of the 

optical carrier to >200 MHz through phase modulation. SBS does not produce 

interchannel crosstalk in WDM systems because the 10-GHz frequency shift is much 

smaller than typical channel spacing.
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