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WHAT WAS STUDIED AT THE LAST
LECTURE?

Introduction
= History

Advantages of Integrated Optics
= Comparison of Optical Fibers with Other Interconnectors

= Comparison of Optical Integrated Circuits with Electrical Integrated Circuits

Substrate Materials for Optical Integrated Circuits
= Hybrid Versus Monolithic Approach

= [II-V and II-VI Ternary Systems
= Hybrid OIC’s in Lithium niobate (LiNbO,)
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THIS LECTURE WILL COVER:

Introduction

Modes
= Modes in a planar waveguide

Boundary conditions
Transcendental equation

Cut off condition
= Symmetric waveguide
= Asymmetric waveguide

Experimental observation of waveguide modes
Numerical modeling
Ray optics approach
Goos-Hanchen shifts
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EVANESCENT EXCITATION VS. NORMAL
INCIDENCE

Variation of refractive indices:

Longitudinal

1. Refractive indices vary along the light propagation direction

2. Approach: transfer matrix method

3. Devices: Distributed Bragg Gratings, Anti-Reflective Coatings.
Transverse

1. The index distribution is not a function of the light propagation direction
2. Approach: guided wave optics

3. Devices: fibers, planar waveguides.
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Thank you once again Joe, without your skills,
this waveguide system would not have been ready in time...
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R WAVEGUIDE

The optical waveguide is the fundamental element that interconnects the various
devices of an optical integrated circuit, just as a metallic strip does in an electrical
integrated circuit. However, unlike electrical current that flows through a metal strip
according to Ohm’s law, optical waves travel in the waveguide in distinct optical
modes. A mode, in this sense, is a spatial distribution of optical energy in one or
more dimensions that remains constant in time.
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HOW DOES LIGHT PROPAGATE IN A
WAVEGUIDE?

= A propagation mode of an ideal loss-less waveguide at a given A preserves the
cross-sectional shape in which the wave propagates.

= Waveguide mode profiles are wavelength dependent.
= Waveguide modes at any given A are determined by the cross-sectional geometry.

= Waveguide modes at any given A are determined by the refractive index profile of
the waveguide.
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CONCEPT OF TOTAL INTERNAL REFLECTION

Figure 1: A laser beam through acrylic shows the concet of total internal reflection
(the light doesn’t continue straight through the edge of the glass but bounces back
and forth until exiting at the end).
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SURVEY: EVANESCENT WAVES

What is an "evanescent field" ?

= EasyPolls: O Side effect of TIR

O Appears in the optically less dense
medium

O Characterized by its propagation in
the x direction

O Characterized by its exponential
attenuation in the z direction

O No energy flows across the boundary

O The component of Poynting vector in
the direction normal to the boundary is
finite, but its time average vanishes

results =~ vote Alina Karabchevsky, Integrated Photonics @
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SNELL'S LAW OF REFRACTION

= When light hits the boundary between two materials, the light is reflected and
refracted. In the transition from one medium to another medium, the propagation
angle changes.

= In 1621, Snell discovered empirically the relationship between the indices of the
materials and the propagation angles of the light.

= The refraction angle can be calculated by Snell’s law of refraction which is defined

as
sin 91 V1 n,

(1)

sin 02 B %) B nq
where 1 is the incident medium, 2 is the transmitted medium, v is the velocity, 0 is the
angle of the light in the medium and n is the refractive index.
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REFLECTION AND

Assumptions:

= Plane wave propagation.
= Linear medium.

= Isotropic medium.

= Smooth planar optical interface.

Figure 2: Plane wave reflection and
refraction at an optical interface.
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FRESNEL'S
EQUATIONS

As light hits the boundary of two
materials, the power is split and a
fraction of the power is refracted while
the rest is reflected.

.
%

In 1825, Fresnel derived a set of
equations that defines the relation
between the reflectance or the
transmittance to the incident angle and
the indices of the material.
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FRESNEL'S FIELD REFLECTIVITY

The reflectivity for optical field components parallel to the incident plane as:
E"y nycosB; —n,cosB, 2)

Pi= EY,  nycos®, +n,cos,

In order to eliminate 6,, we can use Snell’s Law:

" 2
ng [1-— (n_; sin 01) —n, cos 0,

n 2
ny [1— (n—l sin 91) + n, cos 0,

(3)

P =

2

Similar analysis can also find the reflectivity for optical field components

perpendicular to the incident plane as:
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FIELD REFLECTIVITY

Similar analysis can also find the reflectivity for optical field components
perpendicular to the incident plane as:

E", nycos6; —n;cosb,

PL = (4)

Et, nqcosf; + n,cosb,

n 2
nycosf; —n, [1— (—1 sin 01)
n;

n 2
nycosf; +n, [1— (—1 sin 01)
n;

P1 = (5)
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FIELD REFLECTIVITY

Power reflectivities for parallel and perpendicular field components are therefore:

2
2 |ETy
Ry =\ = |= (6)
and
ET |
R, = |Pl|2 = £ (7)
1
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FRESNEL'S POWER TRANSMISSION
COEFTICIENTS

According to energy conservation, the power transmission coefficients can be found
as:

Et" 2
hy=1z| =1—|p (8)
w7 =1l
and
Et,|?
T, = Fl =1- |Pl|2 (9)
1

In practice, for an arbitrary incidence polarization state, the input field can always be
decomposed into E; and E, components. Each can be treated independently.
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FRESNEL'S SPECIAL CASE: NORMAL
INCIDENCE

Normal incidence is when a light is launched perpendicular to the material
interface. In this case, §; = 6, = 0 and cos(6,) = cos(8,) = 1. The field reflectivity can
be simplified as:

n—n;
= = 1
PI=PL 1, (10)
With normal incidence, the power reflectivity is:
2
n—n;
Ry =R, =
e (11)

= If n, > n, there is no phase shift between incident and reflected field (the phase of
both p, and p, is zero).

= If ny <n, there is a m phase shift for both p, and p, because they both become

negative.
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CRITICAL ANGLE - 6.

= However, when light hits the boundary between high to low refractive index
material, above a specific angle, called the critical angle, the light will be fully
reflected.

= This phenomenon is called total internal reflection (TIR). According to Fresnel

equations (2) and (4), total reflection (|p"| = |p,| = 1) occurs when Z—;sin(é?l) =1
and the critical angle is defined as:
. 1 n;
8, =604 =sin" | — (12)
n
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CRITICAL ANGLE

= Obviously, the necessary condition to have a critical angle depends on the
interface condition.

= if n; < n,:there is no real solution for 8, = sin"*(n,/n,).

= It means that when a light beam goes from a low index material to a high index
material, total reflection is not possible.

= if n; > n,: there is a real solution for 6, = sin"1(n,/n,).

= Therefore, total reflection can only happen when a light beam launches from a high
index material to a low index material.
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CRITICAL ANGLE

2
= It is important to note that at a larger incidence angle 6, > 0., 1 — (% sin 91) <0
2

np

2
and \/ 1-— (ﬂ sin 81) becomes imaginary.

2
= Equations (2) and (4) show that if \/ 1-— (ﬂ sin 01) is imaginary, both | P |2 and [p, |?

np

are equal to 1. The important conclusion is that for all incidence angles satisfying
6, = 0. total internal reflection will happen with R = 1.
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CRITICAL ANGLE

(a) | (b) |
|

N¢] | |

Nco | Neo

Figure 3: Reflection at a planar interface between unbounded regions of refractive
indices n., and n. showing (a) total internal reflection and (b) partial reflection and
refraction.

Alina Karabchevsky, Integrated Photonics @



EVANESCENT FIELD

An evanescent field is a side effect of TIR and appears beyond the boundary surface.
Specifically, even though the entire incident wave is reflected back into the
originating medium (TIR), a fraction of the field penetrates into the medium with a
lower n at the boundary. The evanescent wave is leading to the Goos-Hanchen shift.

n2>n3>n1

R T
Figure 4: Total internal reflection and Goos-Hanchen shift. R is the behavior of the

partially reflected beam, T is the behavior of the total internal reflection beam and d
is the Goos-Hanchen shift.

Alina Karabchevsky, Integrated Photonics
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EVANESCENT FIELD

The first to observe the phenomenon was Isaac Newton in 1726. In the experiment,
he used two identical prisms with a distance between them of a few tens of
nanometers. While illuminating a prism with an angle bigger than the critical angle
he saw that the light pass the gap and move to the second prism. This phenomenon
is described as optical tunneling which can be used for beam splitters and filters.

©



EVANESCENT FIELD

= Although according to the ray optic model, the light is totally reflected inside the
guiding layer in the case of guided mode, according to Maxwell’s theory, a fraction
of the field is penetrating outside the guiding layer to a less dense medium before
the total internal reflection occurs. This phenomenon contradicts the total internal
reflection.

= In 1947, Goos and Hanchen observed a small lateral phase shift when the light is
under total internal reflection. It appears that the wave is reflected from a virtual
plane from the medium with the lower refractive index as shown in Figure below.

n2>n3>n1

O



G00S-HANCHEN SHIFT

The wave is reflected from a virtual plane from the medium with the lower refractive
index. The reflected wave phase shift is called Goos-Hanchen shift and is defined as:

J1nz2sin2 ¢ — n12>

Nn, COS @

® =—2tan"?! ( (13)

where n, is the incident medium (higher refractive index), n; is the transmitted
medium (lower refractive index), and ¢ is the incident angle.
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EVANESCENT FIELD

Due to the penetration beyond the guiding layer, the evanescent field interacts with
its surroundings and can be utilized for plasmons, sensing and near-field
microscopy. The penetration depth of the evanescent field to a medium outside the
guiding layer is defined as:

A
d, = 14
P 214/ n,2 sin? ¢ — n,y 2 (14)

where ¢ is the incident angle inside the guiding layer. The equation shows that the
smaller the incident angle, the larger the penetration depth of the evanescent field
into the medium.

o



EVANESCENT FIELD

= The transmitted wavevector is: k; = k;sin0; X + k; cos 0; Z

= Ifny > n,,thensinf; > 1.

= Since sin 6, = %sin 0; (Snell’s law), %sin 8; > 1 for 6; > 6. therefore cos 6, becomes
2 2
complex:

cos 0, = /1 —sin2 6, = j/sin2 9, — 1
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EVANESCENT FIELD

The electric field of the transmitted plane wave is given by E, = Eye/ (ke 7-®0)

E, = Eoej(k_t-f—wt) — Eoej[kt sin(0¢)x+k¢ cos(0)z—wt]

E, = E, ¢/l sin®@)+zjke/sin?@)~1-ot]

By substituting k; = % we obtain:
Et — Eoe—lczej(kx—oot) (15)

wn w .
where k = 71 and k = :\/nlz sinZ 0; — n,?2
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EVANESCENT FIELD

The evanescent field has few unique properties:

= First, the evanescent field doesn’t propagate in the medium but is a localized
oscillating electric and/or magnetic field. The Poynting vector normal to the
surface is equal to zero since it is the average Poynting vector over an oscillation
cycle and, therefore, equal to zero.

= However, the evanescent field can still interact with the surroundings. The
evanescent field can be also converted back into radiation/guiding mode.

= By placing two waveguides close to each other the power of mode from one
waveguide can be transferred to the second waveguide by evanescent field
coupling. This is a near-field optics effect which is called optical tunneling or
tunneling effect. The effect can be utilized for couplers such as ring resonators of a
chip.

= In addition, by manipulating the evanescent field we can control and affect the
guided mode, with nanomaterial or metasurface overlayer.

o



EVANESCENT FIELD -

Et — Eoe—Kﬁei(k&f\—wt)

1)
2)
3)

1)

5)

6)

)

Appears in the optically less dense medium.
Characterized by its propagation in the x direction.

Characterized by its exponential attenuation in the
z direction.

No energy flows across the boundary.

The component of Poynting vector in the direction
normal to the boundary is finite, but its time
average vanishes (what is Poynting vector? what is
time average Poynting vector?).

The Goos-Hanchen effect only occurs for linearly
polarized light.

If the light is circularly or elliptically polarized, it
will undergo the analogous Imbert-Fedorov effect.
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0PTICAL MODE

= The optical wave propagates in the waveguide as a mode. Mode is the spatial
distribution of optical energy propagating inside the waveguide and constant in

time.

= Each mode has a different reflection angle. As the order of the mode increases, the

reflection angle and the propagation constant

"By
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AMP’ERE’S CIRCUITAL LAW

= These days, light is defined as an electromagnetic phenomenon, however, until
1821, electrostatics and magnetostatics were considered separate phenomena.

= In 1821, Danish physicist Hans-Christian Orsted showed experimentally that
flowing electric current creates a magnetic field around it that was observed as a
shift in the needle of a compass that was next to the wire.

= This discovery led to the development of ‘Amp’ere’s circuital law’ which describes
the relation between the magnetic flux density B and the flowing electric current /.
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MAXWELL'S EQUATIONS

Maxwell's equations, or Maxwell-Heaviside
equations, are a set of coupled partial differential
equations that, together with the Lorentz force law,
form the foundation of classical electromagnetism,
classical optics, and electric circuits. The equations
provide a mathematical model for electric, optical, and
radio technologies, such as power generation, electric
motors, wireless communication, lenses, radar etc.
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MAXWELL'S EQUATIONS

= The link between electricity and magnetism was completed by the work of James
Clerk Maxwell.

= He took the four equations made by Gauss (also Coulomb), Faraday, and Amp’ere
and by making some corrections he developed mathematically the connection
between those equations.

= In 1861, Maxwell presented a set of coupled equations (around 20 equations) that
describe electromagnetic phenomena varying in time which are called Maxwell’s
equations.

= The four equations known today were obtained by Oliver Heaviside, using vector
notation to simplify 12 of the 20 equations into the 4 known Maxwell’s equations.
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MAXWELL'S EQUATIONS

= These equations can be used as a mathematical model for phenomena in nature
and for electrical and optical problems.

= In a paper published in 1865, Maxwell has derived a wave equation from his
equations thus discovering electromagnetic waves.

= He suggested that light is an electromagnetic wave and showed this hypothesis to
be consistent with experimental results. Therefore, he concluded that light is an
electromagnetic wave.

= In 1886-1889, German physicist Heinrich Rudolf Hertz performed a series of
experiments that proved that light is an electromagnetic wave as was analytically
calculated by Maxwell.
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MAXWELL'S EQUATIONS

Assumptions:

1) The parameters of the medium in a linear system
don’t dependent on the electric field E and the
magnetic field H: ¢ =¢,¢f U= Up-

2) The medium parameters u and ¢ are constant and
time independent.

3) The medium is isotropic = u and ¢ are direction
independent.

4) The medium is dielectric = | = 0 and puy = 0
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MAXWELL'S EQUATIONS

Assuming linear, homogeneous and isotropic medium, Maxwell’s equations are
defined as

- 0B
Faraday’s law VXE =— T (16)
. aD .
Ampere-Maxwell law VXH= T +/ (17)
Gauss law VD = pext (18)
Gauss's law for magnetism V-B=0 (19)

where E is the electric field vector, D is the electric displacement field vector, H is
the magnetic field vector and B is the magnetic flux density vector. p.4: and J are the

charge and current densities, respectively. O
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MAXWELL'S EQUATIONS

The current density is defined as | = oF, where o is the electric conductivity, and
only exists in ohmic material, such as metals and semiconductors. In dielectric
medium, /] = 0 and pey = 0.

D and B are related to the field vectors and are defined as

D =¢E +P
where ¢, and p, are the electric permittivity and magnetic permeability of vacuum,
respectively, P is the polarization and M is the magnetization.
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POLARIZATION AND MAGNETIZATION

In the case of isotropic material, the polarization and the magnetization are given by
P=¢gyE M=yH

and

D =¢yE+P =egye,E =¢E (20)
B = ,uo(ﬁ + ﬁ) = popyH = uH (21)

where u is the permeability, ¢ is the permittivity, c is the speed of light in vacuum, y is
the electric susceptibility and ¢, is called the relative permittivity and u, the relative
permeability, which in case of non-magnetic material is y, = 1.
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MAXWELL'S EQUATIONS

Maxwell’s equations for dielectric waveguide are given as

VXE = 0B
=7 (16)

_ aD
VXH=— (17)

ot
V-D=0 (18)
V-B=0 (19)
where
B = uH D = ¢E
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MAXWELL'S EQUATIONS

Remindezr:

The divergence of a vector function: of. Of, of
— . = _ X y VA
V-f Fy dy t 5 (22)

The Laplacian of a vector function:

V. F = azfx+02fx+02fx azfy+82fy+52fy azfz+62fz+02fz
oxZ ' 9y2? ' 8z2'0xZ ' 9y? ' 072’ 9x? @ 0y? | 022 (23)
The rotor/curl of a vector function:
X y Z
= z72_ |0 ) o/ | _(9fz O\, (9fz 0fc\. (9 0f\,
Vxf=\"ox oy “lod =\5y 57 )2 \ax ~ oz )7 o ay )* (24)
£ f  f g
b y Z

The BAC CAB law:
Ax(BxC)=B(A-C)—C(A-B)

Vx(Vxf)=V(V-f) - (V-V)Ff =V(V-F) - v?f
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We operate rotor/curl (24) on Eq. (16) and use Eq. (20):

x (3 x F) = - 2 (7 x ) = - 0E
Using BAC CAB law:

Vx(ﬁxﬁ)=§(§-ﬁ)—vzﬁ

—

B=ef 7-5=07x(7xF)=-vF

The wave equation is:

V2E = 0’k
~ Hae2

(25)

(26)

(27)
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The wave equation:

V2E = i
~ ez

where ¢ is the permittivity and u is the permeability.

£ =¢gy5, &y =8.854x%x10"1? F/m

U = lolty Mo =4mx1077 H/m

¢ is the light speed in non-magnetic medium: ¢ = 1/\/goly.

n is the refractive index: n =./¢,

Another form of the wave equation: .
n?(r) 0%E(r,t)

c? dt?2

V2E(r,t) =

(28)

(29)
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THE WAVE EQUATION SOLUTION

The solution of the wave equation for monochromatic harmonic wave (sinusoidal
wave) in time:
E(r,t) = E(r)e/®t (30)

where v is the frequency, c = 4, -v and w = 2nv.

k, is the propagation constant in air (in the course we will use k instead of k).
_Zn w -
0 — AO - C ( )

where w is the angular frequency.
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WELL'S EQUATIONS

Considering light as a transverse electromagnetic wave that oscillates
perpendicular to the direction of light propagation (z) as

E = E(x, y)ej(wt_ﬁz)
I:i = H(x’ y)ej(wt_ﬁz)

where w = 2nf is the angular frequency and [ is the propagation constant.
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MAXWELL'S EQUATIONS

Substituting the wave equations in Maxwell’s Equations (16) and (17), we obtain a set
of equations

VA . . aI_IZ . . 2
3y +]:8Ey = —jwpoHy E +],8Hy = Jwegn“E,
. 0E, and . OH, .,
—JBEx — 7~ = —jwuoHy —jBHyx ——— = jwegn’Ey
0E 0E _ 0H oH _
axy - ayx = —jwpoH, axy — ayx = jweyn?E,

These six equations define each electromagnetic field component and can be used
to analytically calculate the mode distribution for slab waveguide. Other waveguide
configurations, such as rib waveguide, are too complicated and the mode can be

calculated only numerically.
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THEORETICAL DESCRIPTION OF THE MODES
0F A THREE-LAYER SLAB WRVEGUIDE

= A slab waveguide is characterized by parallel planar boundaries with respect to
one (x) direction, but is infinite in extent in the lateral directions (z and y).

= Note: since it is infinite in two dimensions, it is non-practical structure for OIC, but it
forms the basis for the analysis of practical waveguides of rectangular cross
section.
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ASSUMPTIONS

= The layers are all assumed to be infinite in extent in the y and z directions.

= Layers 1 and 3 are also assumed to be semi-infinite in the x direction.

= Light waves are assumed to be propagating in the z direction with S,.
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MAXWELL'S EQUATIONS

= Assuming the dimensions of the slab waveguide with infinite width on the y-axis,
the electric and magnetic fields do not vary on the y-axis and we obtain dE/dy

= 0and dH/dy = 0.

= Substituting each relations separately in Maxwell’s equations, we get the following
separated solutions.

TE mode 42E I ) TM mode
(Hy, 0, Hy) — + (k*n® — B*)E, = 0 = (552) + (kz - ﬂ—)H =0  (0,Hy,0)
x dx \n? dx n2 y
(O’ E_')/' O) ﬁ (Ex; O; EZ)

H,=——E __B
X x wug Y and E, = wean? H, X
| dE .
H. = _J =y __j dH
Z “ wpo dx k= weyNn2 dxy
Ex=E,=Hy,=0 E,=H,=H,=0
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MAXWELL'S EQUATIONS

= Each set of equations defines the field component of two types of modes in a
waveguide. The first set corresponds to the transverse electric (TE - S polarization)
mode and the second set to the transverse magnetic (TM - P polarization) mode.

= The ’transverse’ means that the field vector is orthogonal to the propagation
direction, therefore, having zero longitudinal component. In optical waveguide it is
described as ‘quasi’ because the transverse field is very small.

= It is worth noting that there is another type of mode called transverse electric and
magnetic (TEM) mode where E, = H, = 0. However, dielectric waveguides don’t
support them.
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MAXWELL'S EQUATIONS

Figure below shows the fundamental quasi-TE and quasi-TM modes for a rectangle
buried waveguide with dimensions of 1X1.5 pm.

(a) (b)

Figure 5: (a) Illustration of a buried waveguide. The field distribution of (b)
transverse electric (TE) fundamental mode and (c) transverse magnetic (TM)
fundamental mode of buried waveguide with dimensions of 1X1.5 um.
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MAXWELL'S EQUATIONS

It shows that for each mode type, quasi-TE mode or quasi-TM mode, the electric field
distribution of the mode is different. The difference in the field distribution between
each mode can be utilized for different applications.

= Due to the evanescent field in the x-axis, TM mode can be used for applications
that involve overlayer interaction such as plasmons.

= In TE mode the evanescent tail in the y-axis and can be used for side interaction-
based applications.
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0PTICAL MODES

Mathematical definition of a mode is that it is an electromagnetic field which is a
solution of Maxwell’s wave equation:
V2E(r,t) = [n?/c?]0%E(r,t)/0t? (34)

where E is the electric field vector, r is the radius vector, n(r) is the index of

refraction, and c is the speed of light in a vacuum. For monochromatic waves, the
solutions of Eq. (34) have the form:

E(r,t) = E(r)el®t (35)

VZE(r,t) + k*n*(r)E(r) =0 (36)

where k = w/c =2n/A. If we assume, for convenience, a uniform plane wave
propagating in the z direction. E(r)E(x,y)exp(—jfz), f is the propagation constant,
then Eq. (36) becomes:

0°E,(x)/0x? + 0%E,(x)/0y? + [k*n* — B*]E,(x) = 0 (37)

Alina Karabchevsky, Integrated Photonics @



REGIONS

Since the waveguide is assumed infinite in the y direction, by writing Eq. (37)
separately for the three regions in x, we get:

Regionl: 0<x <
0°E,(x)/0x* + (k*ny* — B*)E,(x) =0
Region2: —t; <x<0

0°E,(x)/0x* + (k*n,* — B*)E,(x) = 0

Region 3: —oo<x =< —t,

0°E,(x)/0x* + (k*n3* — B*)E,(x) = 0
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REGIONS

The solutions are either sinusoidal or exponential functions of x in each of the
regions, depending on whether (k%n;? — f?) for i = 1, 2, 3, is greater than or less than
zero. Of course, E(x,y) and J0E(x,y)/0dx must be continuous at the interface between
layers.

Waveguiding condition:

Ny, >Nz =Ny Or Ny, >Ny = Ny
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k-vector triangle

REGION 1

Domainl: 0 <x < o

0°E, (x)/0x* + (k*ny* — B)E,(x) =0

9S.J9ASUEl

longitudinal
component m

Region 1

= From the waveguiding condition in layer 2

kn,sing, > kny = B>kn; 2 k’*n?—£%<0

= Exponential solution of the wave equation

E,(x) = Ae™?*
While q = /% — k?n,2

Alina Karabchevsky, Integrated Photonics @



k-vector triangle

REGION 2

Domain 2: —ty <X < 0

0°E, (x)/0x? + (k*n,* — B*)E,(x) =0

9S.J9ASUEl

longitudinal
component m

Region 1

= From the waveguiding condition in layer 2

kn, > kn,sing, |sin|<1=p<kn, = k*n,2—£%>0

= Sinusoidal solution of the wave equation w n,
E,(x) = B cos(hx) + C sin(hx)

While h = \/k2n,2 — (2 is the propagation constant in x direction.
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WAVE OPTICS V5. RAY OPTICS BNHLYSIS
IN REGION 2

Domain 2: —t; < x < 0

0%E, (x)/0x? + (k?n,* — B2)E,(x) =0

= Using Pythagorean relation:

,32 + h2 — k2n22

k, = wn,/c with w constant. kn,, f and h are the propagation constants with units of

1/length.

= Plane wave propagates in z direction with angle of:
bm = tan_l(ﬁm/hm)
While q = \/k2n,2 — B2

¢m, h,, and S, belong to the discrete mode m.
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k-vector triangle

REGION 3

Domain 3: — o < x < —t,

0%E, (x)/0x? + (k*n3* — B*)E,(x) = 0

9S.J9ASUEl

longitudinal
component m

Region 1

= From the waveguiding condition in layer 2

kn25in¢>kn3 = ﬁ>kn3 = k2n32—,82 >0

= Exponential solution of the wave equation w n,
E,(x) = DeP**tg)

While p = /B2 — k2n;2 is the propagation constant in x direction and x + ty <O0.
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TE SOLUTION IN REGIONS: SUMMARY

= Wave equation
0°E,(x)/0x* + (k*n;*> — B*)E,(x) = 0
withi=1,2,3

Domainl: 0<x <

E,(x) = Ae™% with q = /p% — k?n,?

Domain 2: —t; <x <0

E,(x) = B cos(hx) + C sin(hx) with h = \/k%n,2 — 2
Domain 3: —0 < x < —t,

E,(x) = DeP*+tg) with p = /B2 — k?n32 and x + ty <0

Alina Karabchevsky, Integrated Photonics @



CONSTANTS
Solution: £,() | Domain

Ae~9* 0<x<o
B cos(hx) + C sin(hx) —t; <x=<0
DeP*+tg) —0 < x < —t,
[ Et1 = Ep
E,(x=0")=E,(x=0")=>A=8B
II Eiy = E3
Ey(x = —tg+) = Ey(x = —tg‘) = B cos(—tyzh) + Csin(—t;h) =D
III Hyy = Hyy
H,(0*) = H,(07) = A= ——- i = L2y

7 wp 0x
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SURVEY: BOUNDARY CONDITIONS

= EasyPolls:

Boundary conditions

O The tangential components of the
electric field are continuous on the
boundary

O The tangential components of the
electric displacement field are
continuous on the boundary

QO The vertical components of the
electric displacement field are
continuous between the two media

O The vertical components of the
electric field are continuous between
the two media

results = vote

Alina Karabchevsky, Integrated Photonics @


https://vote.easypolls.net/6370cf8a7e59a7005ff59511

BOUNDARY CONDITIONS

= The boundary conditions define the behavior of
the electric and the magnetic fields on the
boundary.

= Assume two different media with permittivity of &
and &,, as shown in the figure.

= The electric field - E and the magnetic field H can
be decomposed to the tangential (t) and vertical

(n) components.
E:ETL-I_Et H:Hn‘l‘Ht

Alina Karabchevsky, Integrated Photonics @



BOUNDARY CONDITIONS FOR THE TANGENTIAL
COMPONENT OF THE ELECTRIC FIELD - E,

= Assume electric field in medium 1 (& ). From
Faraday’s law:

Etl
0B
fE-dl:-ﬂ-d/mo ‘;
ot E E,

n 81
a

= Faraday’s law for closed loop a = b = ¢ = d is:

b c d a

TSI L N
a b c d
= Assuming a — d and b — ¢ equal O then:
b d
froaz( s ['.
a c
Alina Karabchevsky, Integrated Ph




BOUNDARY CONDITIONS FOR THE TANGENTIAL
COMPONENT OF THE ELECTRIC FIELD - E,

- f: ~ E,1Al and fcd... ~ —E;;,Al  therefore E; Al
— E» Al = 0 and:

Etl

Ey = Ep ‘ :
E1 81

= The tangential components of the electric field are En
continuous on the boundary.

a

= In addition, D; = ¢;;E; therefore:
D¢y _ D¢,

€1 S

The tangential components of the electric
displacement field are not continuous on the
boundary.
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BOUNDARY CONDITIONS FOR THE VERTICAL
COMPONENT OF THE ELECTRIC FIELD - E,

= From Gauss’s law:

jﬂD-dAzﬂjpdv:(? eeeeeeee

= The figure shows that the surrounded charge is a
surface.

= We write Gauss’s law as:

§p-a1= [[ o

where p, (units of [C/m?] is the charge on the
boundary.




BOUNDARY CONDITIONS FOR THE VERTICAL
COMPONENT OF THE ELECTRIC FIELD - E,

= We write the equation as:
DnlAAl + DnzAAz — pSAA

= Vertical vectors are defined far from the boundary
and the electric field is in medium 1.

= Since AA; = AA, = AA therefore:
—Dnq + Dy = ps




BOUNDARY CONDITIONS FOR THE VERTICAL

COMPONEN

= In addition:

—&1&80En + &280E02 = ps

= Without charge on the boundary, we get:
Dyp1 = Dy

and

1B = &E;

The vertical components of the electric
displacement field are continuous between the two
media but the vertical components of the electric
field are not.

T OF THE ELECTRIC FIELD - E,
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BOUNDARY CONDITIONS FOR THE TANGENTIAL
COMPONENT OF THE MAGNETIC FIELD - H,

= Assume boundary between two media with

different permeability of y; and u,. H,, 1
= Assume Ampere’s law without currents on the ‘ f

boundary:

aD H,, My
H-dl = —]1dA =0 a b
fr-a=[[(1+%)
For closed loop is:
b c d a d -
ff...=j...+f...+f...+f...=0 “— Al
a b c d 2%)

an
2
= Assuming a —d and b — £ equa%lO then: ‘ f
%H'dl=J...+j...=O H,
a c



BOUNDARY CONDITIONS FOR THE TANGENTIAL
COMPONENT OF THE MAGNETIC FIELD - H,

m ff ~ H;1Al and fcd... ~ —H;,Al therefore H; Al

— H»; Al = 0 and so:
HtlAl — thAl

The tangential components of the magnetic field are
continuous on the boundary between the two media.

= From B = uH we get:
Bu1 _ Br

251 Uz

The tangential component of the magnetic flux
density are not continuous on the boundary
between the two media.

H,, Hy
a b
d | lc
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BOUNDARY CONDITIONS FOR THE VERTICAL
COMPONENT OF THE MAGNETIC FIELD - H,,

= From magnetic Gauss’s law:

Hnl 1
%B-dAzO
]

= From the figure: N

fumf rf rf  mo
top side bottom

= We shrink the cylinder - ¢, ... — 0 therefore: ! ‘
HnZ AAZ
f ..~ B,;AA and jg .. ® B,5AA 2
top bottom
= We get: =
Bn1 = Bny H1Hny = U Hpp




BOUNDARY CONDITIONS FOR THE VERTICAL
COMPONENT OF THE MAGNETIC FIELD - H,,

The wvertical components of the magnetic flux
density are continuous on the boundary, but the

nl 1
vertical components of the magnetic field are not. ‘ i AA/]\
1




BOUNDAI

/A
11
IV.

Ei1 = Ep
Ei; = Ee3
Hy1 = Hep
Hi; = Hes

tY CONDITIONS

A X
n,
Hy,
>Z ...........
Hy, )
2
Hy,
Hy
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CONSTANTS
Solution: £,() | Domain

Ae~9* 0<x<o
B cos(hx) + C sin(hx) —t; <x=<0
DePxttg) —00 < x < —tg
[ Et1 = Ep
E,(x=0")=E,(x=0")=>A=8B
II Et; = Ey3
Ey(x = —tg+) = Ey(x = —tg‘) = B cos(—tyzh) + Csin(—t;h) =D
III Htl —_ th
+ _ hC
H,(0%) = H,(01) = A= =2
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OPTICAL WAVEGUIDE MODES

Prof. Alina Karabchevsky,
Integrated Photonics Course 377-2-5599
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BOUNDAI

/A
11
IV.

Ei1 = Ep
Ei; = Ee3
Hy1 = Hep
Hi; = Hes

tY CONDITIONS

A X
n,
Hy
Et l/ — >Z -----------
/ th n
E ______ g
e’ f——>

- '/ Ht3 113
Eg
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CONSTANTS
Solution: £,() | Domain

Ae~9* 0<x<o
B cos(hx) + C sin(hx) —t; <x=<0
DePxttg) —00 < x < —tg
[ Et1 = Ep
E,(x=0")=E,(x=0")=>A=8B
II Et; = Ey3
Ey(x = —tg+) = Ey(x = —tg‘) = B cos(—tyzh) + Csin(—t;h) =D
III Htl —_ th
+ _ hC
H,(0%) = H,(01) = A= =2
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CONSTANTS

Let K = A, we formulate B, C, D via K

K
K = B, K lcos(tgh) — %sin(tgh)] =D, C = _Tq

Ke™* 0<x<ow
K lcos(hx) — %sin(hx)] —tg=x=0

K[cos(htg) — sin(htg)]ep(x”g) —0 <X < —t,

w
K, =2h J : ’“1‘ —
t h
Bl (29 + =+ 5-) (hn® + 0?)
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CONSTANTS

To find one remaining constant K, we normalized the field so that it has a power flow of 1 W/m in the
y direction per unit width using the Poynting vector:

(g g = B [ 2 1 — (38)
zj_ooEny dx = 2(MJ_OO|<€J,(JC)| dx =1

€, (x) represents a power flow of one Watt per unit width in the y direction. we have:

j |8y(x)|2dx =

0
J |Km[cos(hmtg) — sin(hmtg)] exp[pm (x + tg)]|2dx

0
+f |K,,[cos(h,,,x) — (G, /hyy) sin(h,,,x)]|? dx
_tg

*© 2w
" j 1Ky, exp(— ) |2dx = 228 (39)
0 ,Bm

Solving Eq. (39) yields:

W

1 (40)

K, = 2h,, : .
|5l (tg +—+ _) (hm + sz)
dm Pm Alina Karabchevsky, Integrated Photonics ’@



POSSIBLE OPTICAL MODES IN A SLAB
WAVEGUIDE

Guided mode

mode

< Air radiation
> Air =| Substrate 1% order 0™ order mode
( radiation radiation mode mode V0 mmmmmgTTTTTTTI TR
mode mode
0<kn.g<kn;,  kn<kng<kn, kn;<kn <kn, kn,<kn,g
I f } i '

Lo e e TN

Figure 6: Diagram of the possible modes in a slab waveguide.
Alina Karabchevsky, Integrated Photonics @




HW.

Submission due is next week

[1] Derive the expressions for the constants of the TE solution of the wave equation.
[2] Derive the solution of the TM wave equation.

Submit the detailed derivations to: alinak@bgu.ac.il.

Alina Karabchevsky, Integrated Photonics @



Y CONDITION IV

Hiy = His (41)

H,(x = —t;*) = H,(x = —t;7) (42)

aEy(x = _tg+) . aEy(x = _tg_) (43)
dx B 0x

= Transcendental equation for solving the allowed [ graphically or numerically.
p+q

(-5

tan(htg) =
h

Alina Karabchevsky, Integrated Photonics @



EXAMPLE: FINDING 5 FOR TE MODES

m=0,1,2 TE polarization

w20 (0*1Q)
| ™=h*(p+q)/(h*p"q)|

______________

________________

___________________________

--------------------------------------------------

B [um™]

Figure 7: Finding the propagation constant using a numerical simulation.
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THE SYMMETRIC WAVEGUIDE

= The guiding condition
nz > n3 — n1

= At cutoff, the point at which the field becomes oscillatory in Regions 1 and 3, f is
given by:
ﬁ — kn1 — kn3
= By substituting [ in equations of i, p and g
When ﬁ = kn3 = knl:
q=+B%- kznlzﬁzm1 =0

h = \/kznzz — BZ — k\/nzz — nlz Alina Karabchevsky, Integrated Photonics @




THE SYMMETRIC WAVEGUIDE

= By substituting g = 0, p = 0 in transcendental equation - tan(htg) = —(Ifzq)
h2
tan(ht )p_ 0amo =

mg =0,1,2,.. is number of a symmetric mode

htg = m,m withm; = 0,1, 2, ... = points of tan = 0, therefore:

ktg/np2 —ny2 = mgm (44)
21
n22 — Tl12 = gnz — Tl12 (le + nl) = An(nz + nl), = Z
An
2.2 2 24 2
myemeA m<eA
An = 5 0 = s 70 (45)

ty>(ny +ny)(2m)2  4t,%(ny +ny)
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THE SYMMETRIC WAVEGUIDE

» The cut-off condition , ,
2 2
meA meA
An =n, —nqy > s 0 ~ s 0

4t,°(ny + ny) o, 8t,%n,

= The lowest-order mode m, = 0 of the symmetric waveguide does not exhibit a
cutoff.

= All other modes do exhibit a cutoff.

= In principle, any wavelength could be guided in this mode even with an
incrementally small An.

= For small An and/or large A,/t,:
1) Poor confinement.
2) Relatively large evanescent tails of the mode extending into the substrate.
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THE ASYMMETRIC WAVEGUIDE

= The guiding condition N, > N3 D> Ny

= Since nz > n3

4tgz(n2 + ns)

An=n2_n3>

To approximate the asymmetric waveguide, we substitute
(Zma+1)2/102
4(2tg)2(n2+n3)

ty = 2tgandmg =2my +1=An=n, —nz >
= Cutoff condition

(2m, + 1)21,° (2m, + 1)21,°
16t,%(n, + ns) :' 32n,t,°

n, En3

An=n, —ng >

where the m, is the asymmetric mode order.

- Note: This is an estimated model. For a more accurate solution, the transcendental
equation, shown in slide 78, needs to be solved Alina Karabchevsky, Integrated Photonics @



SYMMETRIC V5. ASYMMETRIC WAVEGUIDE

Asymmetric Symmetric
X A X A X A X Y X A X &
TS IS SN
v < o i
[P I N 2,

m=2=m, m=1=m, m=0=m, ol ( v

a- assymmetric

s- symmetric Ms=5=2M,+1 mg=3=2m,+1 mMg=1=2m,+1

m,=2 m,=1 m,=0

Figure 8: Cross-section of the modes for symmetric and asymmetric waveguide.
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THE RAY-OPTIC APPROACH TO OPTICAL
MODE THEORY

= Plane waves propagating along the z direction, support one or more optical modes.
The light propagating in each mode travels in the z direction with a different phase
velocity, which is characteristic of that mode. This description of wave propagation
is generally called the physical-optic approach. An alternative method, the so-
called ray-optic approach.

= The light propagating in the z direction is considered to be composed of plane
waves moving in zig-zag paths in the x-z plane undergoing total internal reflection
at the interfaces bounding the waveguide. The plane waves comprising each mode
travel with the same phase velocity. However, the angle of reflection in the zigzag
path is different for each mode, making the z component of the phase velocity
different. The plane waves are generally represented by rays drawn normal to the
planes of constant phase which explains the name ray-optic.

Alina Karabchevsky, Integrated Photonics




RAY PRATTERNS IN THE THREE-LAYER
PLANAR WRVEGUIDE

The ray patterns shown here, correspond to two modes, say the TE, and TE,,
propagating in three layers waveguide with n, > n3; > n,;. The electric (E) and
magnetic (H) fields of these plane waves traveling along zig-zag paths would add
vectorially to give the E and H distributions of the waves comprising the same two
modes, propagating in the z direction. Both the ray-optic and physical-optic
formulations can be used to represent either TE waves, with components Ey, H;, and

H,, or TM waves, with components H,, E, and E,.

n; np,>n3;=>n;

Yy Z

Alina Karabchevsky, Integrated Photonics @




THE DISCRETE NATURE OF THE
PROPAGATION CONSTANT

= The solution of Maxwell’'s equation subject to the appropriate boundary conditions
requires that only certain discrete values of [ are allowed. Thus, there are only a limited

number of guided modes that can exist when [ is in the range
kng < ﬁ < knz (46)

= The plane wavefronts that are normal to the zig-zag rays are assumed to be infinite, or at
least larger than the cross section of the waveguide that is intercepted; otherwise, they
would not fit the definition of a plane wave, which requires a constant phase over the plane.

= Thus, there is much overlapping of the waves as they travel in the zig-zag path. To avoid
decay of optical energy due to destructive interference as the waves travel through the
guide, the total phase change for a point on a wavefront that travels from the n, —ny
interface to the n, — n, interface and back again must be a multiple of 2.

Alina Karabchevsky, Integrated Photonics @



CHEN SHIFT

2knyty sin Oy, — 2¢p3 — 2¢p = 2mm (47)

600S-HAN

ty is the thickness of the waveguiding Region 2, 6, is the angle of reflection with
respect to the z direction, m is the mode number and ¢,; and ¢,,; are the phase
changes suffered upon total internal reflection at the interfaces. The phases —2¢,;
and —2¢,,, represent the Goos-Hanchen shifts. These phase shifts can be interpreted
as penetration of the zig-zag ray (for a certain depth §) into the confining layers 1

and 3 before it is reflected.

T
Alina Karabchevsky, Integrated Photonics @



G00S-HANCHEN SHIFT

The phase shift of ¢,; and ¢, for TE waves can be calculated from:

tan g = \/nz2 sin® ¢, — n3z” (48)
23 N, COS ¢
2 cin2 2
n,“sin“ ¢, — ny
tan ¢21 — \/ (49)
N, COS @

The phase shift of ¢,; and ¢, for TM waves can be calculated from:
nzz\/nzz sin? ¢, — n3*

Nn3%n, cos ¢,
n,2%,/n,2 sinZ ¢p, — n, 2

n,%n, cos ¢,

tan ¢,3 = (50)

(51)

Alina Karabchevsky, Integrated Photonics @
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G00S-HANCHEN SHIFT

The substitution of either (49) or (51) into (47) results in a transcendental equation in
only one variable, 6,, or ¢,,,, where:

bm == —O0n (52)

For a given m, the parameters n,, n,, n3, t, ¢,, (or 6,,,) can be calculated. Thus, a
discrete set of reflection angles ¢,, are obtained corresponding to the various

modes.

Alina Karabchevsky, Integrated Photonics @



VALID SOLUTIONS

Valid solutions do not exist for all values of m. There is a cutoff condition on allowed
values of m for each set of n,, n,, n; and t, corresponding to the point at which ¢,,
becomes less than the critical angle for total internal reflection at either the n, — n;
or the n, — n, interface.

For each allowed mode, there is a corresponding propagation constant (3, given by:
Bm = kn, sin¢,,, = kn, cos6,, (53)

The velocity of the light parallel to the waveguide is then given by:

v=cC <E> (54)
- \B

The effective index of refraction for the guide is:

Neff = <t (55)

v k
Alina Karabchevsky, Integrated Photonics ’@



THE FORMATION OF MODES (STANDING
WAVES)

The Figure below schematically shows the formation of modes (standing waves) for
(a) the fundamental mode and (b) a higher-order mode, respectively, through the
interference of light waves.

The solid line represents a positive phase front and a dotted line represents a
negative phase front, respectively. The electric field amplitude becomes the
maximum (minimum) at the point where two positive (negative) phase fronts

interfere.
(a)

SRR

J "
E
/\ JANYANRYA YA\ LN /N /N /N >
V2N VA WA /A W et NSNS NS, , @
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COMMON LATERALLY CONFINED PASSIVE
WIWEGUIDE STRUCTURES

(d)

W=0.9 um

F—
.
O 7 pm SizN, m H;=0.585 um H=1.5 um “

Str lp—loaded Ridge ,' Buried Diffused
5 @—>
Figure 12: Common laterally confined passive waveguide structures: (a) a strip-
loaded waveguide made of nitride on a silica substrate covered by silica, (b) a ridge

waveguide made of nitride on a silica substrate, (c) a rib waveguide made of silicon
on a silica substrate, (d) a waveguide buried in silica glass, and (e) a diffused

waveguide in borosilicate glass [1].
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OF AN OPTICAL WAVEGUIDE

|E(x,y)| |E (%, Y)I |E(x,y)| ]

1 8 e
Neir-1.8444 | P Neff=3.3401 1 _ g8
0.8 0.9 um 0.8
0.7 : 0.7
- 06 . 2 0.6
= 0.5 3 0 1.5 um 05
- 04 T, 0.4
0.3 0.3
0.2 . 0.2
( 0.1 & 0.1

e = 8 = -
2-15-1-050 05 1 15 2 8 6 4 2 0 2 4 6 8 2-15-1-050 05 1 15 2
X um X pm X pm
(d [E(x.y)l © E(x.y)| . @ [E.(x.y)|

Neff=1.7276 Nefr=1.8484

y um
y um
'

y um

0.8 pm

o
2-15-1-050 05 1 15 2
X pum X pm

Figure 13: Quasi-TE polarization. Colormaps of |E,(x,y)|, normalized to the
maximum amplitude in single-mode waveguides: (a) slab, (b) buried, (c¢) rib, (d)

diffused, (e) ridge, and (f) strip-loaded [1]. @
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MODES OF AN OPTICAL WAVEGUIDE

(a) " E,(x.y)| | (b)8 |E,(x.y)l ,© , [Ey(x,y)I
1
Nefr=1.7744 =3 3418
Ls eff 0.9 6 i & Neff=3.3418 0.9
1 0.8 4 | 0.9 um 0.8
0.7 um 0.7 =] 0.7
- 05— | {06 _ 2 0.5 b
S O s -
> - 0.5 s 0 0.5
S05¢ 0.4 B -0.5 0.4
~ B 0.3 4 1 403
) 0.2 Y 0.2
1.5 -6 1.5 2
0.1 A 2 0.1
2 -8 - e
2-15-1-050 05 1 15 2 2 2-15-1-050 05 1 15 2
X pm X um
@ [E,(x.y)] (e) [E,(x.y)] . @ [E,(x.y)] 1
Neff=1.5022 2 0.9 Nefr=1.7928
15 d ) A
0.8
I 0.7 5 2 um
0.5
=) g . g 1 um [ ]
g = 9 05 3 0 I e T
- -~ -
-0.5 04 0.7 pm
1 0.3 =
f.& : A R 0.2 4
15 .z 20— N o
-15 -10 -5 0 5 10 15 F2-15-1-050 051 1.5 2 6 4 -2 0 2 4 6
X pum X pm X pm

Figure 14: Quasi-TM polarization. Colormaps of |Ey(x, y)|, normalized to the
maximum amplitude in single-mode waveguides: (a) slab, (b) buried, (c¢) rib, (d)
dlffused, (e) rldge, and (f) Strlp-loaded from [1]- Alina Karabchevsky, Integrated Photonics @



EXPERIMENTAL OBSERVATION OF
WAVEGUIDE MODES

(b)

Figure 10: Photos of an experimental setup for waveguide coupling and observation

of output mode.
Alina Karabchevsky, Integrated Photonics @



EXPERIMENTAL OBSERVATION OF
WAVEGUIDE MODES

The lowest order mode (m = 0) appears as a single band of light, while higher order
modes have a correspondingly increased number of bands.

Oscllioscope 22z -
Display & o '
S5 a

y

NSITY

POW

OSCILLO-
SCOPE
Detectar [AMPL[FIER
Beam

Power ) Sample with
Manitor cleaved/polished
end faces

Ge
Detector

* - image
’ Converter
! Tube
Micropositioner Mounts

/’ -
e
X
[.C.
Rotating mirror Display i
side view

1.15 ,;m/
Beam

Splitter

synchronized with
Oscilloscope Sweep

Figure 9: Diagram of an experimental setup that can be used to measure optical
mode shapes [2]. O
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OPTICAL MODES IN SLAB WRVEGUIDE

Optical mode patterns in a
planar waveguide, a TEO,

b TE1, c TE2. In the planar
guide, light is unconfined in
the y direction, and is
limited, as shown in the
photos, only by the extent
of spreading of

the input laser beam.
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OPTICAL MODES IN PLANAR WAVEGUIDE

= The light image appears as a band rather than a spot because it is confined by the
waveguide only in the x direction. Since the waveguide is much wider than its
thickness, the laser beam is essentially free to diverge in the y direction.

= To obtain a quantitative display of the mode profile, i.e., optical power density vs.
distance across the facet of the waveguide, a rotating mirror is used to scan the
image of the waveguide facet across a photodetector that is masked to a narrow slit
input. The electrical signal from the detector is then fed to the vertical scale of an
oscilloscope on which the horizontal sweep has been synchronized with the mirror
scan rate.

= The result is in the form of graphic displays of the mode shape, like those shown in
the next frame:
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MODE ANALYSIS

TeEgand TE; MODE PROFILES

EXPERIMENTAL

= Note that the modes have the theoretically
predicted sinusoidal shape in waveguide
guiding layer and exponential shape beyond
it. Optical power density, or intensity, which is
proportional to EZ2.

= Details of the mode shape, like the rate of
exponential decay (or extinction) of the
evanescent ’’tail” extending across the
waveguide-substrate and waveguide-air
interfaces, depend strongly on the values of AIR < GUIDE F+ SUB.
6 at the interface.
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EXPERIMENTAL MODE ANALYSIS

= As can be seen in Fig. above, the extinction is much sharper at the waveguide-air
interface where An ~ 2.5 than at the waveguide-substrate plane where An ~ 0.01-0.1.

= A system like that shown in Fig. 8 is particularly useful for analysis of mode shapes in
semiconductor waveguides, which generally support only one or two modes because of
the relatively small An at the waveguide-substrate interface. Generally, the position of
the focused input laser beam can be moved toward the center of the waveguide to
selectively pump the zeroth order mode, or toward either the air or substrate interface
to select the first order mode.

= It becomes very difficult to visually resolve the light bands in the case of higher-order,
multimode waveguides because of spatial overlapping, even though the modes may be
electromagnetically distinct and non-coupled one to another.

= Waveguides produced by depositing thin films of oxides, nitrides or glasses onto glass
or semiconductor substrates usually are multi-mode, supporting 3 or more modes,

because of the larger waveguide substrate An.
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ION EXCHANGE CHANNEL OPTICAL
WAVEGUIDES

Figure 11:Butt-coupling to a channel waveguide.
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THE PRISM COUPLER USED AS R DEVICE
FOR MODAL ANALYSIS

The prism coupler has the property that it selectively couples light into (or out of) a
particular mode, depending on the angle of incidence (or emergence). The mode-
selective property of the prism coupler, results from the fact that light in each mode
within a waveguide propagates at a different velocity, and continuous phase-
matching is required for coupling. The particular angle of incidence required to
couple light into a given mode or the angle of emergence of light coupled out of a
given mode can both be accurately calculated.
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Figure 12: coupling using prism couplers [from Fosco.] #n ¥ erabchevsiy, Integrated Photonics @



SCATTER

ING FROM THE EDGES
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1)

2)

3)

4)

List and explain other coupling in and
out techniques.

What are the pits and falls of each
coupling technique?

Mathematically express the coupling
between two guides.

Define coupling efficiency.

Alina Karabchevsky, Integrated Photonics
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