LECTURE 4 - II

BER DISPERSION

Prof. Alina Karabchevsky,
Fundamentals of Fiber Optics Communication 377-2-5060
School of ECE

Ben-Gurion University of the Negev, Israel



http://www.alinakarabchevsky.com/

OUTLINE

Dispersion in Single-Mode Fibers
= Group-velocity dispersion

= Material dispersion

= Waveguide dispersion

= Higher-order dispersion
Polarization-mode dispersion
Dispersion-induced limitations
Limitations on the Bit Rate

Bibliography




DISPERSION POW

A

E 8.0 _|
; Transmission
[ velocity:
2 3,11Gb/s
o0 _]
b
2
= 1,55Gb/s
g
.g ],0
% 0,78Gb/s
a

0.0 _|

0 20 40 60 80 100 120
Fiber length [km]

Figure 1: Attenuation caused by dispersion at transmission speed a) 0.78 Gb/s, b)
1.55 Gb/s, ¢) 3.11 Gb/s for the optical fiber characterized by the chromatic
dispersion of 17 ps/nm/km and propagating the light from the single-mode laser
DFB at spectral width of 0.1 nm.

e



DISPERSION IN SINGLE-MODE FIBERS (SMI)

= The intermodal dispersion in multimode fibers leads to considerable broadening
of short optical pulses (10 ns/km).

In the geometrical-optics description, such broadening was attributed to different
paths followed by different rays.

= In the modal description it is related to the different mode indices (or group
velocities) associated with different modes.

Core index n; Guiw

From [1]



DISPERSION IN SINGLE-MODE FIBERS (SMF)
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(s)




DISPERSION IN SINGLE-MODE FIBERS (SMI)

= The main advantage of SMFs 1is that
intermodal dispersion is absent simply
because the energy of the injected pulse is
transported by a single mode. However, pulse
broadening does not disappear altogether.

= The group velocity associated with the
fundamental mode is frequency dependent
because of chromatic dispersion.

= As a result, different spectral components of
the pulse travel at slightly different group
velocities, a phenomenon referred to as
group-velocity dispersion (GVD), intramodal
dispersion, or simply fiber dispersion.

MU
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Figure 3: Broadening of pulses as
they propagate in a fiber along

many kilometers.




GROUP-VELOCITY DISPERSION

Assume a single-mode fiber of length L. The frequency time delay at the end of the
fiberis T = L/v,, where v, is the group velocity which is defined as:

AN
(%)
By using f = nky = nw/c and v; = ¢/n, in Eq. (1), the group index 7, is defined as:
L dn
y=n+w (%> (2)

where 7 is the mode index (shown in lecture 3).

The frequency dependence of the group velocity leads to pulse broadening simply
because different spectral components of the pulse disperse during propagation
and do not arrive simultaneously at the fiber output.
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REFRACTIVE INDEX n AND GROUP INDEX n,
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Figure 4:The refractive index n and group index n, for fused silica [1].




GROUP-VELOCITY DISPERSION

The pulse broadening for a fiber of length L is defined as:

2T == L (2 s = 1 L8 o = 15,0 3
T 40" T do\yy ) A0 T Lggz e = thhe )

where Aw is the spectral width of the pulse and f, is the GVD parameter which defines
the broadening of the pulse in the fiber.

In some optical systems, wavelength is used instead of frequency - w = 2nc/A.

AT = d (L AA = DLAA
“a\v, )T )
and
2TC
D = —7,32 (5)

where D is the dispersion parameter and is expressed in units of ps/(nm-km).
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DISPERSION PARAMETER - D

The effect of dispersion on the bit rate B can be estimated by using the criterion BAT < 1.
Using AT this condition becomes:
BL|D|AA < 1 (6)

It provides an order-of-magnitude estimate of the BL product offered by single-mode
fibers. For standard silica fibers, D is relatively small in the wavelength region near 1.3
um [D~1 ps/(nm - km)].

For a semiconductor laser, the spectral width A/ is 2-4 nm even when the laser operates
in several longitudinal modes. The BL product of such lightwave systems can exceed 100
(Gb/s)km. Indeed, 1.3 ym telecommunication systems typically operate at a bit rate of
2Gb/s with a repeater spacing of 40-50 km. The BL product of single-mode fibers can
exceed 1 (Tb/s)km when SM semiconductor lasers are used to reduce A1 below 1 nm.
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DISPERSION PARAMETER - D

The dispersion parameter D can vary considerably when the operating wavelength
is shifted from 1.3 ym. The wavelength dependence of D is governed by the
frequency dependence of the mode index n.

D — 2rc d (1)  2m zdﬁ_l_ d*n Do 4D 7
T TR do\v,)”  2Z\"de  Ydw?z) T MTW

Dy, is the material dispersion and Dy, is the waveguide dispersion defined as:
DM _ _Z_Hdnzg zldnzg (8)
A2 dw ¢ dA
o 21A [ny 4% Vd?(Vb) N dn,, d(Vb)
W2 Inyw  dV? dw dV

(9)

where n,, is the group index of the cladding.
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MATERIAL DISPERSION

Material dispersion occurs because the refractive index of the material changes with
the frequency w. On a fundamental level, the material dispersion is related to the
resonance frequencies where the material absorbs the radiation. Far from the
medium resonances, the refractive index n(w) is approximated by the Sellmeier
equation:

2 Bw;?
n(w) =1+ Z 21 l > (10)
= w;i“ —w
A; = 2mc/w;

where w; is the resonance frequency and B; is the oscillator strength.
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SILICA DISPERSION
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Figure 5: Dependence of refraction index and wavelength for fused silica [Malitson

1965].
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MATERIAL DISPERSION

The sum in Eq. (10) extends over all material resonances that contribute to the
frequency range of interest. In optical fibers, the parameters are obtained by fitting
the dispersion curves to the equation. They depend on the amount of dopants and
have been tabulated for several kinds of fibers.

For pure silica:
B; = 0.6961663, B, = 0.4079426, B; = 0.8974794,
A1 = 0.0684043 pm, A, = 0.1162414 ym, and A; = 9.896161 pum.

The group index n; =n + w(dn/dw) can be obtained by using these parameter
values.
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LERO-DISPERSION WAVELENGTH

= Material dispersion DM is related to the slope of n, by the relation
Dy = c'(dngy/dl)

= At A = 1.276 pym the dispersion is zero which named zero-dispersion wavelength -
AZD-

= DM < OWhenA < AZD a.ndDM > OWhen/I > AZD'

In the wavelength range 1.25-1.66 ym it can be approximated by an empirical
relation:

AZD
Dy ~ 122 (1 — T) (an
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WAVEGUIDE DISPERSION

The waveguide dispersion Dy, depends
on the V parameter of the fiber. For
fiber, both derivatives are positive, as
shown in Fig. 6. Therefore, Dy, is
negative for wavelength range of 0-1.6
M.
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Figure 6: b and its derivatives d(Vb)/dV
and V[d?(Vb)/dV?] as function of the V

parameter [1]. @



TOTAL DISPERSION FOR FIBER

= Dy is negative below 1,, and positive above
it.

= The waveguide dispersion shifts 1,, by 30-40
nm to near 1.31 pm.

= Dy, also reduces D from its material value D,
in the wavelength range 1.3-1.6 ym which is
of interest for optical communication systems. -20

_30 l | | | |

= D =15 — 18 ps/(nm - km) around 1.55 pm. 11 12 13 14 15 16 17

Wavelength (um) From [1]

This region is of considerable interest for lightwave systems, since the fiber loss is
minimum near 1.55 pym. High values of D limit the performance of 1.55 ym lightwave

systems.
@
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WAVEGUIDE DISPERSION

= It is possible to design the fiber
parameters, such as the core radius a
and the index difference A and
change the waveguide dispersion Dy, .
Azp is shifted to 1.55 pm. Such fibers
are called dispersion shifted fibers.

20

Dispersion [ps/(km-nm)]
()

= In addition, It is possible to adjust the
waveguide dispersion causing the 20 L _

. . . 1.1 1.2 3 .4 . . .
total dispersion D to be relatively

Wavelength (um)
small over a wide wavelength range Figure 7: Typical wavelength dependence of
from 1.3 to 1.6 pym. Such fibers are

: ) ) the dispersion parameter D for standard,
called dispersion-flattened fibers. dispersion-shifted, and dispersion-flattened

fibers [1]. @




DISPERSION-SHIFTED FIBERS

(a)

(b)
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Figure 8: Several index profiles used in the design of single-mode fibers. Upper and
lower rows correspond to standard and dispersion-shifted fibers, respectively [1].
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DISPERSION-SHIFTED FIBERS

(a)

(b)

(c)

The top row corresponds to standard fibers which are designed to have minimum
dispersion near 1.3 ym with a cutoff wavelength in the range 1.1-1.2 ym.

(a) A pure-silica cladding and a core doped with GeO, to obtain A~ 3 - 1073.

(b) Lowers the cladding index over a region adjacent to the core by doping it with
fluorine.

(c) An undoped core - doubly clad or depressed-cladding fibers and W fibers,
reflecting the shape of the index profile.
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DISPERSION-SHIFTED FIBERS

AN vy

(f)

The bottom row shows three index profiles used for dispersion-shifted fibers for
which the zero-dispersion wavelength is chosen in the range 1.45-1.60 ym. A
triangular index profile with a depressed or raised cladding is often used for this
purpose. Sometimes as many as four cladding layers are used for dispersion-
flattened fibers.
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DISPERSION-SHIFTED FIBERS

= The design of dispersion modified fibers involves the use of multiple cladding
layers and a tailoring of the refractive-index profile.

= Waveguide dispersion can be used to produce dispersion-decreasing fibers in
which GVD decreases along the fiber length because of axial variations in the core
radius.

= In another kind of fibers, known as the dispersion compensating fibers, GVD is
made normal and has a relatively large magnitude.
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HIGHER-ORDER DISPERSION

= It appears from Eq. (6) that the BL product of a single-mode fiber can be increased
indefinitely by operating at the zero-dispersion wavelength 1,, where D = 0.

= Optical pulses still experience broadening because of higher-order dispersive
effects. This feature can be understood by noting that D cannot be made zero at all
wavelengths contained within the pulse spectrum centered at A,,. Clearly, the
wavelength dependence of D will play a role in pulse broadening.

= Higher-order dispersive effects are governed by the dispersion slope S = dD/dA.
The parameter S is also called a differential-dispersion parameter. By using Eq. (5)

it can be written as:
S = (2mc/2?)? B3 + (4mc/2%) B, (12)

where (3 = dfB,/dw = d3B/dw? is the third-order dispersion parameter. At 1 = A,p,
>, = 0 and S is proportional to 5.
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HIGHER-ORDER DISPERSION

= The numerical value of the dispersion slope S plays an important role in the design
of modern WDM systems. Since S > 0 for most fibers, different channels have
slightly different GVD wvalues. This feature makes it difficult to compensate
dispersion for all channels simultaneously.

= To solve this problem, new kind of fibers have been developed for which S is either
small (reduced-slope fibers) or negative (reverse-dispersion fibers). Table 1 lists
the values of dispersion slopes for several commercially available fibers.

= It may appear from Eq. (6) that the limiting bit rate of a channel operating at A
= A;p will be infinitely large. However, this is not the case since S or ; becomes
the limiting factor in that case.
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CHARACTERISTICS OF SEVERAL

COMMERCIAL FIBERS

Table 1: Characteristics of several commercial fibers

Fiber type and trade Actr D (C band) Slope S
name pmz (nm) [Ps/(km-nm)] | [ps/(km-nm?)]

Corning SMF-28
Lucent AllWave
Alcatel ColorLock
Corning Vascade
Lucent TrueWave-RS
Corning LEAF
Lucent TrueWave-XL
Alcatel TeraLight

80
80
101
50
12
12
65

1302-1322
1300-1322
1300-1322
1300-1310
1470-1490
1490-1500
1570-1580
1440-1450

16 to 19
17 to 20
16 to 19
18 to 20
2.6t06
2to06
-1.4 to -4.6
5.5t0 10

0.09
0.088
0.09
0.06
0.05
0.06
0.112
0.058
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HIGHER-ORDER DISPERSION

We can estimate the limiting bit rate by noting that for a source of spectral width , the
effective value of dispersion parameter becomes D = SAA. The limiting bit rate-
distance product can now be obtained by using Eq. (6) with this value of D. The

resulting condition becomes:
BL|S|(A)* < 1 (13)

For a multimode semiconductor laser with AA = 2 nm and a dispersion-shifted fiber
with S = 0.05 ps/(nm? - km) at A = 1.55 pm, the BL product approaches 5 (Tb/s)-km.
Further improvement is possible by using single-mode semiconductor lasers.
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POLARIZATION-MODE DISPERSION

= A potential source of pulse broadening is
related to fiber birefringence. Small departures mode
from perfect cylindrical symmetry lead to i;”g%’;g‘r
birefringence because of different mode indices Slow
associated with the orthogonally polarized
components of the fundamental fiber mode.

= If the input pulse excites both polarization East

components, it becomes broader as the two axis

components disperse along the fiber because of ‘mode_ /
. . " . index n
their  different group  velocities. This is smaller

phenomenon is called the PMD and has been
studied extensively because it limits the
performance of modern lightwave systems.
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POLARIZATION-MODE DISPERSION

In fibers with constant birefringence (e.qg., polarization-maintaining fibers), pulse
broadening can be estimated from the time delay AT between the two polarization
components during propagation of the pulse. For a fiber of length L, AT is given by:

= L|B1x — Biy| = L(AB1) (14)

AT =

Vgx  Vgy

where the subscripts x and y identify the two orthogonally polarized modes and AfS;
is related to the difference in group velocities along the two principal states of
polarization.

Similar to the case of intermodal dispersion, the quantity AT /L is a measure of PMD.
For polarization-maintaining fibers, AT /L is quite large (~1 ns/km) when the two
components are equally excited at the fiber input but can be reduced to zero by
launching light along one of the principal axes.
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POLARIZATION-MODE DISPERSION

= The situation is somewhat different for conventional fibers in which birefringence
varies along the fiber in a random fashion. The polarization state of light
propagating in fibers will generally be elliptical and would change randomly along
the fiber during propagation.

= The polarization state will also be different for different spectral components of the
pulse. The final polarization state is not of concern for most lightwave systems as
photodetectors used inside optical receivers are insensitive to the state of
polarization unless a coherent detection scheme is employed.

= What affects such systems is not the random polarization state but pulse
broadening induced by random changes in the birefringence. This is referred to as
PMD-induced pulse broadening.

o



POLARIZATION-MODE DISPERSION

The analytical treatment of PMD is quite complex in general because of its statistical
nature. A simple model divides the fiber into a large number of segments. Both the
degree of birefringence and the orientation of the principal axes remain constant in each
section but change randomly from section to section. In effect, each fiber section can be
treated as a phase plate using a Jones matrix.

Jones calculus is a way to describe polarized light in optics discovered by R. C. Jones in
1941.

= Jones vector - describe the polarized light

Ex Exejd)x
E = = . (15)
(Ey > (Eyejqby
= Jones matrix - describe linear optical elements. For example: rotation and polarization.
a1 Qg2
= 16
4 (a21 azz) (16)
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POLARIZATION-MODE DISPERSION

= Propagation of each frequency component associated with an optical pulse through
the entire fiber length is then governed by a composite Jones matrix obtained by
multiplying individual Jones matrices for each fiber section.

= The composite Jones matrix shows that two principal states of polarization exist for
any fiber such that, when a pulse is polarized along them, the polarization state at
fiber output is frequency independent to first order, in spite of random changes in
fiber birefringence. These states are analogous to the slow and fast axes associated
with polarization-maintaining fibers.

= An optical pulse not polarized along these two principal states splits into two parts
which travel at different speeds. The differential group delay AT is largest for the
two principal states of polarization.

=)



POLARIZATION-MODE DISPERSION

The principal states of polarization provide a convenient basis for calculating the
moments of AT. The PMD-induced pulse broadening is characterized by the root-
mean-square (RMS) value of AT , obtained after averaging over random
birefringence changes. Several approaches have been used to calculate this
average. The variance o2 = ((AT)?) turns out to be the same in all cases and is given
by:

or?(T) = Z(Aﬁl)zlcz[e_z/lc +z/l. - 1] (17)

where [, is the correlation length defined as the length over which two polarization
components remain correlated; its value can vary over a wide range from 1 m to 1
km for different fibers, typical values being ~10 m.

o



PULSE BROADENING

For short distances such that z < [, oT = (AB;)z from Eq. (17), as expected for a
polarization-maintaining fiber. For distances z > 1 km, a good estimate of pulse
broadening is obtained using z > [.. For a fiber of length L, AT in this approximation
becomes

ol =~ (AL I L = Dpx/z (18)

where D, is the PMD parameter.

Measured values of D), vary from fiber to fiber in the range D, = 0.01 — 10 ps/ Vkm.
Fibers installed during the 1980s have relatively large PMD such that D,
> 0.1 ps/vkm. In contrast, modern fibers are designed to have low PMD, and
typically D, < 0.1 ps/ Vkm for them. Because of the VL dependence, PMD-induced

pulse broadening is relatively small compared with the GVD effects. Indeed, cT~1 ps
for fiber lengths ~100 km and can be ignored for pulse widths > 10 ps.
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BASIC PROPAGATION EQUATION

The discussion in previous slides of pulse broadening is based on an intuitive
phenomenological approach. It provides a first-order estimate for pulses whose
spectral width is dominated by the spectrum of the optical source.

In general, the extent of pulse broadening depends on the width and the shape of
input pulses. Each frequency component of the optical field propagates in a single-
mode fiber as:

E(r,w) = 2F (x,y)B(0, w) exp(jB2) (19)

where % is the polarization unit vector, (0, w) is the initial amplitude, and S is the
propagation constant.
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BASIC P]

= The field distribution F(x,y) of the fundamental fiber mode can be approximated
by the Gaussian distribution.

R0PAGATION EQUATION

= In general, F(x,y) also depends on w, but this dependence can be ignored for
pulses whose spectral width Aw is much smaller than w, — a condition satisfied by
pulses used in lightwave systems.

= Here w, is the frequency at which the pulse spectrum is centered,; it is referred to
as the carrier frequency.

©



BASIC PROPAGATION EQUATION

Different spectral components of an optical pulse propagate inside the fiber
according to the simple relation

B(z,w) = B(0, w) exp(jBz) (20)

The amplitude in the time domain is obtained by taking the inverse Fourier
transform and is given by

B(z,t) =f B(z, ) exp(—jowt) dw (21)

The initial spectral amplitude B(0,w) is just the Fourier transform of the input
amplitude B(0, w).
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BASIC PROPAGATION EQUATION

Pulse broadening results from the frequency dependence of . For pulses for which
Aw K wy, it is useful to expand f(w) in a Taylor series around the carrier frequency
w, and retain terms up to third order. In this quasi-monochromatic approximation:

Bw) = @) 2 ~ o + 1 (80) + 22 (8)? + 52 (a0 22)

where Aw = w — wy and B, = (d™B/dw™)y=w,- From Eq. (1) p; = 1/v,, where v, is
the group velocity. The GVD coefficient [, is related to the dispersion parameter D
by Eq. (5), whereas (3 is related to the dispersion slope S through Eq. (12). We
substitute Egs. (20) and (22) in Eq. (21) and introduce a slowly varying amplitude
A(z,t) of the pulse envelope as:

B(Z, t) — A(Z, t) eXp[j(ﬁOZ - th)] (23)

(=)



BASIC PROPAGATION EQUATION

The amplitude A(z, t) is found to be given by:
{ ] . .
Az, t) = %d(Aw)A(O, Aw) - exp [j[)’lew + ]E,BZZ(Aa))Z + JgﬁgZ(Aw)S — j(Aw)t| (24)

where A(0, Aw) = A(0, w) is the Fourier transform of 4(0, t).

By calculating dA/0z and noting that Aw is replaced by j(dA/dt) in the time domain,
Eq. (24) can be written as:
0A 0A jB,0%A B3 03A

32 TP i T T 9 T 6 o

This is the basic propagation equation that governs pulse evolution inside a single-
mode fiber. In the absence of dispersion (f, = f; = 0), the optical pulse propagates
without change in its shape such that A(z,t) = A(0,t — B,2).

=0 (25)
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BASIC PROPAGATION EQUATION

Transforming to a reference frame moving with the pulse and introducing the new
coordinates

t'=t—pfyz and z=72 (26)
f1 can be eliminated in Eq. (25) to yield
0A jB, 0%A 3 03A _ 0

_ — 27
az’+ 2 9t'% 6 9’3 (27)

For simplicity of notation, we drop the primes over z' and t'.
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CHIRPED GAUSSIAN PULSES

Lets consider the propagation of chirped Gaussian pulses inside optical fibers by
choosing the initial field as:
1—jc{t\
2 (T0>

where A, is the peak amplitude. The parameter T, represents the half-width at 1/e
intensity point. It is related to the full-width at half-maximum (FWHM) of the pulse by
the relation

A(0,t) = Ay exp

(28)

TFWHM = 2\/111(2) TO =~ 1665To (29)

The parameter C governs the frequency chirp imposed on the pulse. A pulse is said
to be chirped if its carrier frequency changes with time.

o



The frequency change is related to the phase
derivative and is given by:
ap C

Sw(t) = — 3 = T2 (30)
0

where ¢ is the phase of A(0,t). The time-
dependent frequency shift 6w is called the
chirp. The spectrum of a chirped pulse is
broader than that of the unchirped pulse. This

can be seen by taking the Fourier transform of
Eqg. (28) so that

A..(O ) _ A 2T[T02 (UZTOZ
=R T P T 20+ 0

(31

ED GAUSSIAN PULSES

1 v T T 7]
ﬂ H Pulse at the Fiber Input -

Electric Field

|||||||||||||||| T " T 1 1771

Figure 9: Electric field of a pulse at the fiber
input and output. Note that the pulse here
propagates from the left to the right [1].
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CHIRPED GAUSSIAN PULSES

The spectral half-width (at 1/e intensity point) is given by:
Awy =+/14+C? Ty ! (32)

In the absence of frequency chirp (C = 0), the spectral width satisfies the relation
AwyT, = 1. Such a pulse has the narrowest spectrum and is called transform-limited.

The spectral width is enhanced by a factor of V1 + C? in the presence of linear chirp,
as seen in Eq. (32). The pulse-propagation equation (27) can be easily solved in the
Fourier domain. Its solution is [see Eq. (24)]:

1 o ; .
Az, t) = %J A(0, w) exp <é,822w2 + ]gﬁgza)S —ja)t> dw (33)

where A(0,w) is given by Eq. (31) for the Gaussian input pulse. Let us first consider
the case in which the carrier wavelength is far away from the zero-dispersion
wavelength so that the contribution of the 3 term is negligible.
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CHIRPED GAUSSIAN PULSES

The integration in Eq. (33) can be performed analytically with the result:

A(z,t) = 4o ex (1+jC)t2]
T J0@  L12T6%Q(2) 59

where Q(z) =1+ (C —j)B,z/ TO2 . It shows that a Gaussian pulse remains Gaussian on
propagation but its width, chirp, and amplitude change as dictated by the factor Q(z). For
example, the chirp at a distance z changes from its initial value C to become

C.(z) =C+ (1 +C3B,z/T,*

Changes in the pulse width with z are quantified through the broadening factor given by:

Iy Cpz ’ B2z ’
T—O—J(” T02> +(¥> 55)

where T; is the half-width defined similar to T.
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ED GAUSSIAN PULSES

(8]
T T

BROADENING FACTOR, T4/ To
-~ n

o
1 L1 T
-
b
-

DISTANCE, z/Lyp

Figure 10: Variation of broadening factor with propagated distance for a chirped
Gaussian input pulse. Dashed curve is for an unchirped Gaussian pulse. For 5, < 0
the same curves are obtained if the sign of the chirp parameter C is reversed [1].
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CHIRPED GAUSSIAN PULSES

Figure 10 shows the broadening factor T, /T, as
a function of the propagation distance z/Lp,
where L, = T,%/|p,| is the dispersion length.

An unchirped pulse (C =0) broadens as
J1+ (z/Lp)? and its width increases by a factor
ofvV2atz = L.

BROADENING FACTOR, T4/ Tp

DISTANCE, z/Lp



The chirped pulse, on the other hand, may broaden or
compress depending on whether f, and C have the
same or opposite signs.

= ,C>0 - the chirped Gaussian pulse broadens
monotonically at a rate faster than the unchirped pulse.

= f,C <0 - the pulse width initially decreases and
becomes minimum at a distance

Zmin = [ICI/(1 + C*)]Lp (36)

The minimum value depends on the chirp parameter as
Tlmin — To/\/ 1 + CZ (37)

Physically, when f(,C <0, the GVD-induced -chirp
counteracts the initial chirp, and the effective chirp
decreases until it vanishes at z = z,,i,.-

ED GAUSSIAN PULSES

BROADENING FACTOR, T4/ Tp

DISTANCE, z/Lp



CHIRPED GAUSSIAN PULSES

The pulse no longer remains Gaussian on propagation and develops a tail with an
oscillatory structure. Such pulses cannot be properly characterized by their FWHM.

The RMS width of the pulse defined as
o =(t2) = (t)? (38)
where the angle brackets denote averaging with respect to the intensity profile, i.e.,
Jo tmlA(z, 0% dt
[Z 1Az D12 dt

(t™) = (39)

(=)



CHIRPED GAUSSIAN PULSES

The broadening factor is defined as o/0,, where o, is the RMS width of the input
Gaussian pulse (¢, = T,/V/2) is given by

0-2 . CﬁZL ? ﬁZL ’ 2N\2 ﬁSL ?
M S

where L is the fiber length.

We assumes that the optical source used to produce the input pulses is nearly
monochromatic. To account for the source spectral width, we must treat the optical
field as a stochastic process and consider the coherence properties of the source
through the mutual coherence function.




CHIRPED GAUSSIAN PULSES

When the source spectrum is Gaussian with the RMS spectral width o,, the
broadening factor is

o2 CB,L\° [ Bl , 2
?—(1+2%2) +(1+Vw)(2002> +(1+C2+V,%) (4&0) (41)

where V, is defined as V, = 20,,p,.

It provides an expression for dispersion-induced broadening of Gaussian input
pulses under quite general conditions.

o



LIMITATIONS ON THE BIT RATE

The limitation imposed on the bit rate by fiber dispersion can be quite different
depending on the source spectral width. It is instructive to consider the following
two cases separately.

= Optical Sources with a Large Spectral Width.
= Optical Sources with a Small Spectral Width.

Bit rate is the number of bits that are conveyed or processed per unit of time.

o



0PTICAL SOURCES WITH A LARGE
SPECTRAL WIDTH

This case corresponds to IV, > 1.

Assume operating away from the zero-dispersion wavelength so that the f; term can
be neglected. For source with a large spectral width, the effects of frequency chirp
are negligible (C = 0). We obtain

0% = 09° + (B,L0,)? = 04 + (DL0oy)? (42)

where o0, is the RMS source spectral width in wavelength units. The output pulse
width is thus given by

0 =+/0y2 + 0p? (43)

where o, = |D|Lo; provides a measure of dispersion-induced broadening.

=)



0PTICAL SOURCES WITH A LARGE
SPECTRAL WIDTH

The criterion is that the broadened pulse should remain inside the allocated bit slot,
Ty = 1/B. A commonly used criterion is ¢ < Ty /4 (for Gaussian pulses at least 95%).

The limiting bit rate is given by 4Bo < 1. In the limit op >» 0,, 0 = g, = |D|Lgy, and
the condition becomes

1
BL|D|oy < 2 (44)
At the zero-dispersion wavelength, 5, = 0. We obtain
1 1
0% =0y + E(,BgLawz)z = 0% + E(SLO'AZ)Z (45)

where S is the differential-dispersion parameter and defined in Eq. (12).

©



0PTICAL SOURCES WITH A LARGE
SPECTRAL WIDTH

The output pulse width is o, = |S|Loy? < \/—15 When o, > g,, the limitation on the bit

rate is governed by

1
BL|S|03% < \/_§ (46)

Example:

In case of a light-emitting diode for which g; =~ 15 nm.
By using D = 17 ps/(nm - km) at 1.55 ym, we get BL < 1 (Gb/s) - km.

At the zero-dispersion wavelength, BL can be increased to 20 (Gb/s)-km for a typical
value S = 0.08 ps/(nm? - km).

©



0PTICAL SOURCES WITH R SMALL
SPECTRAL WIDTH

This case correspondsto IV, < 1.

we neglect the f; termandsetC =0

2
P2 L
o =o0g+ <2LO_O = 0'02 + O-Dz (47)

In the case of a narrow source spectrum, dispersion-induced broadening depends
on the initial width g,, whereas it is independent of o, when the spectral width of the
optical source dominates.

By choosing an optimum value of 0,, 0 can be minimized. For 0y, = op = /|S,|L/2,itis

given by g = /|5, |L.

s



0PTICAL SOURCES WITH R SMALL
SPECTRAL WIDTH

The limiting bit rate is obtained by using 4Bo < 1 and leads to the condition

1
By/1B2IL < 7 (48)

The difference between a small spectral width to a large spectral width that the bit
rate (B) is scales as L~1/2 rather than L1,

©



0PTICAL SOURCES WITH R SMALL
SPECTRAL WIDTH

10° |

10" ¢

Bit Rate (Gb/s)

10° |

10—1 el s
10° 10*

Fiber Length (km)

Figure 11: Limiting bit rate of single-mode fibers as a function of the fiber length for
o, = 0,1,5 nm. The case of g, = 0 corresponds to the case of an optical source whose

spectral width is much smaller than the bit rate [1]. @



0PTICAL SOURCES WITH R SMALL
SPECTRAL WIDTH

Close to the zero-dispersion wavelength, §, =~ 0, we obtain
1
0% = po® + E(ﬁ3L/4,002 > = po” + pp° (49)
The limiting bit rate is obtained by using the condition 4Bc < 1,
B(IB5|L)Y3 < 0.324 (50)

The dispersive effects are most forgiving in this case. When f; = 0.1 ps3/km, the bit
rate can be as large as 150 Gb/s for L = 100 km.

The performance of a lightwave system can be improved considerably by operating
it near the zero-dispersion wavelength of the fiber and using optical sources with a
relatively narrow spectral width.
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EFFECT OF FREQUENCY CHIRP

Optical pulses are often non-Gaussian and may exhibit
considerable chirp.

In a super-Gaussian model, the initial field is given by
. 2m
1+jC [t
(%)

where the parameter m controls the pulse shape.

(51)

A(0,T) = Ay exp

= m = 1 - chirped Gaussian pulse.

= Large value of m - nearly rectangular with sharp leading
and trailing edges.

The limiting bit rate-distance product BL is found by
requiring that the RMS pulse width does not increase
above a tolerable value.

Intensity

X
Figure 12: Profile of the super-
Gaussian beam for wvarious
values of parameter n [2].
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EFFECT OF FREQUENCY CHIRP

- B2 = —20 ps¥/km

= The BL product is smaller for super-
Gaussian pulses because such pulses

broaden more rapidly than Gaussian = 1000
pulses. = 500}
2 [

= The BL product is reduced g

dramatically for negative values of the

chirp parameter ¢ due to enhanced

broadening occurring when pf,C 1is s0f | | | | |

positive. -6 -4 -2 0 2 4 6
Chirp parameter, C

100 r

Figure 13: Dispersion-limited BL product as
a function of the chirp parameter for
Gaussian (solid curve) and super-Gaussian
(dashed curve) input pulses [1]. O
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