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DISPERSION POWER PENALTY

Figure 1: Attenuation caused by dispersion at transmission speed a) 0.78 Gb/s, b) 

1.55 Gb/s, c) 3.11 Gb/s for the optical fiber characterized by the chromatic 

dispersion of 17 ps/nm/km and propagating the light from the single-mode laser 

DFB at spectral width of 0.1 nm.
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DISPERSION IN SINGLE-MODE FIBERS (SMF)

▪ The intermodal dispersion in multimode fibers leads to considerable broadening 

of short optical pulses (10 ns/km).

▪ In the geometrical-optics description, such broadening was attributed to different 

paths followed by different rays.

▪ In the modal description it is related to the different mode indices (or group 

velocities) associated with different modes.
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DISPERSION IN SINGLE-MODE FIBERS (SMF)

Figure 2: Broadening and attenuation of two adjacent pulses as they propagate in a 

fiber.
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DISPERSION IN SINGLE-MODE FIBERS (SMF)

▪ The main advantage of SMFs is that 
intermodal dispersion is absent simply 
because the energy of the injected pulse is 
transported by a single mode. However, pulse 
broadening does not disappear altogether. 

▪ The group velocity associated with the 
fundamental mode is frequency dependent 
because of chromatic dispersion. 

▪ As a result, different spectral components of 
the pulse travel at slightly different group 
velocities, a phenomenon referred to as 
group-velocity dispersion (GVD), intramodal 
dispersion, or simply fiber dispersion.
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Figure 3: Broadening of pulses as 

they propagate in a fiber along 

many kilometers.



GROUP-VELOCITY DISPERSION

Assume a single-mode fiber of length 𝐿. The frequency time delay at the end of the 

fiber is 𝑇 = Τ𝐿 𝑣𝑔, where 𝑣𝑔 is the group velocity which is defined as:

𝑣𝑔 =
𝑑𝛽

𝑑𝜔

−1

By using 𝛽 = ത𝑛𝑘0 = Τത𝑛𝜔 𝑐 and 𝑣𝑔 = Τ𝑐 ത𝑛𝑔 in Eq. (1), the group index ത𝑛𝑔 is defined as:

ത𝑛𝑔 = ത𝑛 + 𝜔
𝑑 ത𝑛

𝑑𝜔

where ത𝑛 is the mode index (shown in lecture 3).

The frequency dependence of the group velocity leads to pulse broadening simply 

because different spectral components of the pulse disperse during propagation 

and do not arrive simultaneously at the fiber output.
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REFRACTIVE INDEX 𝑛 AND GROUP INDEX 𝑛𝑔

Figure 4: The refractive index 𝑛 and group index 𝑛𝑔 for fused silica [1].
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GROUP-VELOCITY DISPERSION

The pulse broadening for a fiber of length 𝐿 is defined as:

∆𝑇 =
𝑑𝑇

𝑑𝜔
∆𝜔 =

𝑑

𝑑𝜔

𝐿

𝑣𝑔
∆𝜔 = 𝐿

𝑑2𝛽

𝑑𝜔2
∆𝜔 = 𝐿𝛽2∆𝜔

where ∆𝜔 is the spectral width of the pulse and 𝛽2 is the GVD parameter which defines 
the broadening of the pulse in the fiber.

In some optical systems, wavelength is used instead of frequency - 𝜔 = Τ2𝜋𝑐 𝜆.

∆𝑇 =
𝑑

𝑑𝜆

𝐿

𝑣𝑔
∆𝜆 = 𝐷𝐿∆𝜆

and

𝐷 = −
2𝜋𝑐

𝜆2
𝛽2

where 𝐷 is the dispersion parameter and is expressed in units of ps/(nm∙km).
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DISPERSION PARAMETER - 𝐷

The effect of dispersion on the bit rate 𝐵 can be estimated by using the criterion 𝐵∆𝑇 < 1. 

Using ∆𝑇 this condition becomes:

𝐵𝐿 𝐷 ∆𝜆 < 1

It provides an order-of-magnitude estimate of the BL product offered by single-mode 

fibers. For standard silica fibers, 𝐷 is relatively small in the wavelength region near 1.3 

µm [𝐷~1 Τps (nm ∙ km)].

For a semiconductor laser, the spectral width ∆𝜆 is 2-4 nm even when the laser operates 

in several longitudinal modes. The BL product of such lightwave systems can exceed 100 

(Gb/s)km. Indeed, 1.3 µm telecommunication systems typically operate at a bit rate of 

2Gb/s with a repeater spacing of 40-50 km. The BL product of single-mode fibers can 

exceed 1 (Tb/s)km when SM semiconductor lasers are used to reduce ∆𝜆 below 1 nm.
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DISPERSION PARAMETER - 𝐷

The dispersion parameter 𝐷 can vary considerably when the operating wavelength 

is shifted from 1.3 µm. The wavelength dependence of 𝐷  is governed by the 

frequency dependence of the mode index ത𝑛.

𝐷 = −
2𝜋𝑐

𝜆2

𝑑

𝑑𝜔

1

𝑣𝑔
= −

2𝜋

𝜆2
2

𝑑 ത𝑛

𝑑𝜔
+ 𝜔

𝑑2 ത𝑛

𝑑𝜔2
= 𝐷𝑀 + 𝐷𝑊

𝐷𝑀 is the material dispersion and 𝐷𝑊 is the waveguide dispersion defined as:

𝐷𝑀 = −
2𝜋

𝜆2

𝑑𝑛2𝑔

𝑑𝜔
=

1

𝑐

𝑑𝑛2𝑔

𝑑𝜆

𝐷𝑊 = −
2𝜋∆

𝜆2

𝑛2𝑔
2

𝑛2𝜔

𝑉𝑑2 𝑉𝑏

𝑑𝑉2
+

𝑑𝑛2𝑔

𝑑𝜔

𝑑 𝑉𝑏

𝑑𝑉

where 𝑛2𝑔 is the group index of the cladding.
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MATERIAL DISPERSION

Material dispersion occurs because the refractive index of the material changes with 

the frequency 𝜔. On a fundamental level, the material dispersion is related to the 

resonance frequencies where the material absorbs the radiation. Far from the 

medium resonances, the refractive index 𝑛(𝜔) is approximated by the Sellmeier 

equation:

𝑛2 𝜔 = 1 + ෍

𝑖=1

𝑀
𝐵𝑖𝜔𝑖

2

𝜔𝑖
2 − 𝜔2

𝜆𝑖 = Τ2𝜋𝑐 𝜔𝑖

where 𝜔𝑖  is the resonance frequency and 𝐵𝑖 is the oscillator strength.
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SILICA DISPERSION

Figure 5: Dependence of refraction index and wavelength for fused silica [Malitson 

1965].
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MATERIAL DISPERSION

The sum in Eq. (10) extends over all material resonances that contribute to the 

frequency range of interest. In optical fibers, the parameters are obtained by fitting 

the dispersion curves to the equation. They depend on the amount of dopants and 

have been tabulated for several kinds of fibers.

For pure silica:

𝐵1 = 0.6961663, 𝐵2 = 0.4079426, 𝐵3 = 0.8974794,

𝜆1 = 0.0684043 μm, 𝜆2 = 0.1162414 μm, and 𝜆3 = 9.896161 μm.

The group index 𝑛𝑔 = 𝑛 + 𝜔( Τ𝑑𝑛 𝑑𝜔) can be obtained by using these parameter 

values.
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ZERO-DISPERSION WAVELENGTH

▪ Material dispersion DM is related to the slope of 𝑛𝑔 by the relation

𝐷𝑀 = 𝑐−1( Τ𝑑𝑛𝑔 𝑑𝜆)

▪ At 𝜆 = 1.276 μm the dispersion is zero which named zero-dispersion wavelength - 

𝜆𝑍𝐷.

▪ 𝐷𝑀 < 0 when 𝜆 < 𝜆𝑍𝐷 and 𝐷𝑀 > 0 when 𝜆 > 𝜆𝑍𝐷.

In the wavelength range 1.25-1.66 µm it can be approximated by an empirical 

relation:

𝐷𝑀 ≈ 122 1 −
𝜆𝑍𝐷

𝜆
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WAVEGUIDE DISPERSION

The waveguide dispersion 𝐷𝑊 depends 

on the V parameter of the fiber. For 

fiber, both derivatives are positive, as 

shown in Fig. 6. Therefore, 𝐷𝑊  is 

negative for wavelength range of 0-1.6 

µm.
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Figure 6: 𝑏 and its derivatives Τ𝑑(𝑉𝑏) 𝑑𝑉 

and 𝑉 Τ𝑑2 𝑉𝑏 𝑑𝑉2  as function of the 𝑉 

parameter [1].



TOTAL DISPERSION FOR FIBER

▪ 𝐷𝑀 is negative below 𝜆𝑍𝐷 and positive above 

it.

▪ The waveguide dispersion shifts 𝜆𝑍𝐷 by 30-40 

nm to near 1.31 µm.

▪ 𝐷𝑀 also reduces 𝐷 from its material value 𝐷𝑀 

in the wavelength range 1.3-1.6 µm which is 

of interest for optical communication systems.

▪ 𝐷 = 15 −  18 Τps (nm ∙ km) around 1.55 µm.
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This region is of considerable interest for lightwave systems, since the fiber loss is 

minimum near 1.55 µm. High values of D limit the performance of 1.55 µm lightwave 

systems.

From [1]



WAVEGUIDE DISPERSION

▪ It is possible to design the fiber 

parameters, such as the core radius a 

and the index difference ∆  and 

change the waveguide dispersion 𝐷𝑊. 

𝜆𝑍𝐷 is shifted to 1.55 µm. Such fibers 

are called dispersion shifted fibers.

▪ In addition, It is possible to adjust the 

waveguide dispersion causing the 

total dispersion 𝐷  to be relatively 

small over a wide wavelength range 

from 1.3 to 1.6 µm. Such fibers are 

called dispersion-flattened fibers.
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Figure 7: Typical wavelength dependence of 

the dispersion parameter 𝐷  for standard, 

dispersion-shifted, and dispersion-flattened 

fibers [1].



DISPERSION-SHIFTED FIBERS

Figure 8: Several index profiles used in the design of single-mode fibers. Upper and 

lower rows correspond to standard and dispersion-shifted fibers, respectively [1].
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DISPERSION-SHIFTED FIBERS

The top row corresponds to standard fibers which are designed to have minimum 
dispersion near 1.3 µm with a cutoff wavelength in the range 1.1-1.2 µm. 

(a) A pure-silica cladding and a core doped with GeO2 to obtain ∆≈ 3 ∙ 10−3. 

(b) Lowers the cladding index over a region adjacent to the core by doping it with 
fluorine. 

(c) An undoped core - doubly clad or depressed-cladding fibers and W fibers, 
reflecting the shape of the index profile.
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DISPERSION-SHIFTED FIBERS

The bottom row shows three index profiles used for dispersion-shifted fibers for 

which the zero-dispersion wavelength is chosen in the range 1.45-1.60 µm. A 

triangular index profile with a depressed or raised cladding is often used for this 

purpose. Sometimes as many as four cladding layers are used for dispersion-

flattened fibers.
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DISPERSION-SHIFTED FIBERS

▪ The design of dispersion modified fibers involves the use of multiple cladding 

layers and a tailoring of the refractive-index profile. 

▪ Waveguide dispersion can be used to produce dispersion-decreasing fibers in 

which GVD decreases along the fiber length because of axial variations in the core 

radius. 

▪ In another kind of fibers, known as the dispersion compensating fibers, GVD is 

made normal and has a relatively large magnitude.
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HIGHER-ORDER DISPERSION

▪ It appears from Eq. (6) that the BL product of a single-mode fiber can be increased 

indefinitely by operating at the zero-dispersion wavelength 𝜆𝑍𝐷 where 𝐷 = 0.

▪ Optical pulses still experience broadening because of higher-order dispersive 

effects. This feature can be understood by noting that 𝐷 cannot be made zero at all 

wavelengths contained within the pulse spectrum centered at 𝜆𝑍𝐷. Clearly, the 

wavelength dependence of 𝐷 will play a role in pulse broadening.

▪ Higher-order dispersive effects are governed by the dispersion slope 𝑆 = Τ𝑑𝐷 𝑑𝜆. 

The parameter 𝑆 is also called a differential-dispersion parameter. By using Eq. (5) 

it can be written as:

𝑆 = Τ2𝜋𝑐 𝜆2 2𝛽3 + Τ4𝜋𝑐 𝜆3 𝛽2

where 𝛽3 = Τ𝑑𝛽2 𝑑𝜔 ≡ Τ𝑑3𝛽 𝑑𝜔3 is the third-order dispersion parameter. At 𝜆 = 𝜆𝑍𝐷, 

𝛽2 = 0 and 𝑆 is proportional to 𝛽3.

23
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HIGHER-ORDER DISPERSION

▪ The numerical value of the dispersion slope 𝑆 plays an important role in the design 

of modern WDM systems. Since 𝑆 > 0 for most fibers, different channels have 

slightly different GVD values. This feature makes it difficult to compensate 

dispersion for all channels simultaneously. 

▪ To solve this problem, new kind of fibers have been developed for which 𝑆 is either 

small (reduced-slope fibers) or negative (reverse-dispersion fibers). Table 1 lists 

the values of dispersion slopes for several commercially available fibers.

▪ It may appear from Eq. (6) that the limiting bit rate of a channel operating at 𝜆
= 𝜆𝑍𝐷 will be infinitely large. However, this is not the case since 𝑆 or 𝛽3 becomes 

the limiting factor in that case.
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CHARACTERISTICS OF SEVERAL 
COMMERCIAL FIBERS
Table 1: Characteristics of several commercial fibers
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Fiber type and trade 

name

𝐴eff

(µm2)

𝜆𝑍𝐷

(nm)

D (C band)

[ps/(km∙nm)]

Slope 𝑆
[ps/(km∙nm2)]

Corning SMF-28 80 1302-1322 16 to 19 0.09

Lucent AllWave 80 1300-1322 17 to 20 0.088

Alcatel ColorLock 80 1300-1322 16 to 19 0.09

Corning Vascade 101 1300-1310 18 to 20 0.06

Lucent TrueWave-RS 50 1470-1490 2.6 to 6 0.05

Corning LEAF 72 1490-1500 2 to 6 0.06

Lucent TrueWave-XL 72 1570-1580 -1.4 to -4.6 0.112

Alcatel TeraLight 65 1440-1450 5.5 to 10 0.058



HIGHER-ORDER DISPERSION

We can estimate the limiting bit rate by noting that for a source of spectral width , the 

effective value of dispersion parameter becomes 𝐷 = 𝑆∆𝜆. The limiting bit rate-

distance product can now be obtained by using Eq. (6) with this value of 𝐷. The 

resulting condition becomes:

𝐵𝐿 𝑆 ∆𝜆 2 < 1

For a multimode semiconductor laser with ∆𝜆 = 2 nm and a dispersion-shifted fiber 

with 𝑆 = 0.05 Τps (nm2 ∙ km) at 𝜆 = 1.55 μm, the 𝐵𝐿 product approaches 5 (Tb/s)∙km. 

Further improvement is possible by using single-mode semiconductor lasers.

26
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POLARIZATION-MODE DISPERSION

▪ A potential source of pulse broadening is 

related to fiber birefringence. Small departures 

from perfect cylindrical symmetry lead to 

birefringence because of different mode indices 

associated with the orthogonally polarized 

components of the fundamental fiber mode.

▪ If the input pulse excites both polarization 

components, it becomes broader as the two 

components disperse along the fiber because of 

their different group velocities. This 

phenomenon is called the PMD and has been 

studied extensively because it limits the 

performance of modern lightwave systems.
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POLARIZATION-MODE DISPERSION

In fibers with constant birefringence (e.g., polarization-maintaining fibers), pulse 

broadening can be estimated from the time delay ∆𝑇 between the two polarization 

components during propagation of the pulse. For a fiber of length 𝐿, ∆𝑇 is given by:

∆𝑇 =
𝐿

𝑣𝑔𝑥
−

𝐿

𝑣𝑔𝑦
= 𝐿 𝛽1𝑥 − 𝛽1𝑦 = 𝐿 ∆𝛽1

where the subscripts 𝑥 and 𝑦 identify the two orthogonally polarized modes and ∆𝛽1 

is related to the difference in group velocities along the two principal states of 

polarization.

Similar to the case of intermodal dispersion, the quantity Τ∆𝑇 𝐿 is a measure of PMD. 

For polarization-maintaining fibers, Τ∆𝑇 𝐿 is quite large (~1 ns/km) when the two 

components are equally excited at the fiber input but can be reduced to zero by 

launching light along one of the principal axes.

28
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POLARIZATION-MODE DISPERSION

▪ The situation is somewhat different for conventional fibers in which birefringence 

varies along the fiber in a random fashion. The polarization state of light 

propagating in fibers will generally be elliptical and would change randomly along 

the fiber during propagation.

▪ The polarization state will also be different for different spectral components of the 

pulse. The final polarization state is not of concern for most lightwave systems as 

photodetectors used inside optical receivers are insensitive to the state of 

polarization unless a coherent detection scheme is employed.

▪ What affects such systems is not the random polarization state but pulse 

broadening induced by random changes in the birefringence. This is referred to as 

PMD-induced pulse broadening.
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POLARIZATION-MODE DISPERSION

The analytical treatment of PMD is quite complex in general because of its statistical 
nature. A simple model divides the fiber into a large number of segments. Both the 
degree of birefringence and the orientation of the principal axes remain constant in each 
section but change randomly from section to section. In effect, each fiber section can be 
treated as a phase plate using a Jones matrix.

Jones calculus is a way to describe polarized light in optics discovered by R. C. Jones in 
1941.

▪ Jones vector - describe the polarized light

𝐸 =
𝐸𝑥

𝐸𝑦
=

𝐸𝑥𝑒𝑗𝜙𝑥

𝐸𝑦𝑒𝑗𝜙𝑦

▪ Jones matrix - describe linear optical elements. For example: rotation and polarization.

𝐴 =
𝑎11 𝑎12

𝑎21 𝑎22

30
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POLARIZATION-MODE DISPERSION

▪ Propagation of each frequency component associated with an optical pulse through 

the entire fiber length is then governed by a composite Jones matrix obtained by 

multiplying individual Jones matrices for each fiber section.

▪ The composite Jones matrix shows that two principal states of polarization exist for 

any fiber such that, when a pulse is polarized along them, the polarization state at 

fiber output is frequency independent to first order, in spite of random changes in 

fiber birefringence. These states are analogous to the slow and fast axes associated 

with polarization-maintaining fibers.

▪ An optical pulse not polarized along these two principal states splits into two parts 

which travel at different speeds. The differential group delay ∆𝑇 is largest for the 

two principal states of polarization.
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POLARIZATION-MODE DISPERSION

The principal states of polarization provide a convenient basis for calculating the 

moments of ∆𝑇. The PMD-induced pulse broadening is characterized by the root-

mean-square (RMS) value of ∆𝑇 , obtained after averaging over random 

birefringence changes. Several approaches have been used to calculate this 

average. The variance 𝜎𝑇
2 ≡ ∆𝑇 2  turns out to be the same in all cases and is given 

by:

𝜎𝑇
2 𝑇 = 2 ∆𝛽1

2𝑙𝑐
2 𝑒− Τ𝑧 𝑙𝑐 + Τ𝑧 𝑙𝑐 − 1

where 𝑙𝑐 is the correlation length defined as the length over which two polarization 

components remain correlated; its value can vary over a wide range from 1 m to 1 

km for different fibers, typical values being ~10 m.
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PULSE BROADENING

For short distances such that 𝑧 ≪ 𝑙𝑐, 𝜎𝑇 = ∆𝛽1 𝑧 from Eq. (17), as expected for a 

polarization-maintaining fiber. For distances 𝑧 > 1 km, a good estimate of pulse 

broadening is obtained using 𝑧 ≫ 𝑙𝑐. For a fiber of length 𝐿, ∆𝑇 in this approximation 

becomes

𝜎𝑇 ≈ ∆𝛽1 𝑙𝑐𝐿 ≡ 𝐷𝑝 𝐿

where 𝐷𝑝 is the PMD parameter.

Measured values of 𝐷𝑝 vary from fiber to fiber in the range 𝐷𝑝 = 0.01 − 10 Τps km. 

Fibers installed during the 1980s have relatively large PMD such that 𝐷𝑝

> 0.1 Τps km . In contrast, modern fibers are designed to have low PMD, and 

typically 𝐷𝑝 < 0.1 Τps km for them. Because of the 𝐿 dependence, PMD-induced 

pulse broadening is relatively small compared with the GVD effects. Indeed, 𝜎𝑇~1 ps 

for fiber lengths ~100 km and can be ignored for pulse widths > 10 ps.
33
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BASIC PROPAGATION EQUATION

The discussion in previous slides of pulse broadening is based on an intuitive 

phenomenological approach. It provides a first-order estimate for pulses whose 

spectral width is dominated by the spectrum of the optical source.

In general, the extent of pulse broadening depends on the width and the shape of 

input pulses. Each frequency component of the optical field propagates in a single-

mode fiber as:
෨𝐸 𝑟, 𝜔 = ො𝑥𝐹 𝑥, 𝑦 ෨𝛽 0, 𝜔 exp(𝑗𝛽𝑧)

where ො𝑥 is the polarization unit vector, ෨𝛽 0, 𝜔  is the initial amplitude, and 𝛽 is the 

propagation constant.
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BASIC PROPAGATION EQUATION

▪ The field distribution 𝐹 𝑥, 𝑦  of the fundamental fiber mode can be approximated 

by the Gaussian distribution. 

▪ In general, 𝐹 𝑥, 𝑦  also depends on 𝜔, but this dependence can be ignored for 

pulses whose spectral width ∆𝜔 is much smaller than 𝜔0 – a condition satisfied by 

pulses used in lightwave systems. 

▪ Here 𝜔0 is the frequency at which the pulse spectrum is centered; it is referred to 

as the carrier frequency.
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BASIC PROPAGATION EQUATION

Different spectral components of an optical pulse propagate inside the fiber 

according to the simple relation
෨𝐵 𝑧, 𝜔 = ෨𝐵 0, 𝜔 exp(𝑗𝛽𝑧)

The amplitude in the time domain is obtained by taking the inverse Fourier 

transform and is given by

𝐵 𝑧, 𝑡 = න
−∞

∞

෨𝐵 𝑧, 𝜔 exp(−𝑗𝜔𝑡)  𝑑𝜔

The initial spectral amplitude ෨𝐵 0, 𝜔  is just the Fourier transform of the input 

amplitude 𝐵 0, 𝜔 .

36
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BASIC PROPAGATION EQUATION

Pulse broadening results from the frequency dependence of 𝛽. For pulses for which 

∆𝜔 ≪ 𝜔0, it is useful to expand 𝛽 𝜔  in a Taylor series around the carrier frequency 

𝜔0 and retain terms up to third order. In this quasi-monochromatic approximation:

𝛽 𝜔 = ത𝑛 𝜔
𝜔

𝑐
≈ 𝛽0 + 𝛽1 ∆𝜔 +

𝛽2

2
∆𝜔 2 +

𝛽3

6
∆𝜔 3

where ∆𝜔 = 𝜔 − 𝜔0 and 𝛽𝑚 = Τ𝑑𝑚𝛽 𝑑𝜔𝑚
𝜔=𝜔0

. From Eq. (1) 𝛽1 = Τ1 𝑣𝑔, where 𝑣𝑔 is 

the group velocity. The GVD coefficient 𝛽2 is related to the dispersion parameter 𝐷 

by Eq. (5), whereas 𝛽3 is related to the dispersion slope 𝑆 through Eq. (12). We 

substitute Eqs. (20) and (22) in Eq. (21) and introduce a slowly varying amplitude 

𝐴(𝑧, 𝑡) of the pulse envelope as:

𝐵 𝑧, 𝑡 = 𝐴 𝑧, 𝑡 exp 𝑗 𝛽0𝑧 − 𝜔0𝑡
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BASIC PROPAGATION EQUATION

The amplitude 𝐴(𝑧, 𝑡) is found to be given by:

𝐴 𝑧, 𝑡 =
1

2𝜋
𝑑 ∆𝜔 ሚ𝐴 0, ∆𝜔 ∙ exp 𝑗𝛽1𝑧∆𝜔 +

𝑗

2
𝛽2𝑧 ∆𝜔 2 +

𝑗

5
𝛽3𝑧 ∆𝜔 3 − 𝑗 ∆𝜔 𝑡

where ሚ𝐴 0, ∆𝜔 ≡ ሚ𝐴 0, 𝜔  is the Fourier transform of 𝐴 0, 𝑡 .

By calculating Τ𝜕𝐴 𝜕𝑧 and noting that ∆𝜔 is replaced by 𝑗 Τ𝜕𝐴 𝜕𝑡  in the time domain, 

Eq. (24) can be written as:

𝜕𝐴

𝜕𝑧
+ 𝛽1

𝜕𝐴

𝜕𝑡
+

𝑗𝛽2

2

𝜕2𝐴

𝜕𝑡2
−

𝛽3

6

𝜕3𝐴

𝜕𝑥3
= 0

This is the basic propagation equation that governs pulse evolution inside a single-

mode fiber. In the absence of dispersion (𝛽2 = 𝛽3 = 0), the optical pulse propagates 

without change in its shape such that 𝐴 𝑧, 𝑡 = 𝐴(0, 𝑡 − 𝛽1𝑧).
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BASIC PROPAGATION EQUATION

Transforming to a reference frame moving with the pulse and introducing the new 

coordinates

𝑡′ = 𝑡 − 𝛽1𝑧 and 𝑧 = 𝑧′

𝛽1 can be eliminated in Eq. (25) to yield

𝜕𝐴

𝜕𝑧′
+

𝑗𝛽2

2

𝜕2𝐴

𝜕𝑡′2 −
𝛽3

6

𝜕3𝐴

𝜕𝑡′3 = 0

For simplicity of notation, we drop the primes over 𝑧′ and 𝑡′.
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CHIRPED GAUSSIAN PULSES

Lets consider the propagation of chirped Gaussian pulses inside optical fibers by 

choosing the initial field as:

𝐴 0, 𝑡 = 𝐴0 exp −
1 − 𝑗𝐶

2

𝑡

𝑇0

2

where 𝐴0 is the peak amplitude. The parameter 𝑇0 represents the half-width at Τ1 𝑒 

intensity point. It is related to the full-width at half-maximum (FWHM) of the pulse by 

the relation

𝑇FWHM = 2 ln(2) 𝑇0 ≈ 1.665𝑇0

The parameter 𝐶 governs the frequency chirp imposed on the pulse. A pulse is said 

to be chirped if its carrier frequency changes with time. 
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CHIRPED GAUSSIAN PULSES

The frequency change is related to the phase 

derivative and is given by:

𝛿𝜔 𝑡 = −
𝜕𝜙

𝜕𝑡
=

𝐶

𝑇0
2

where 𝜙  is the phase of 𝐴(0, 𝑡) . The time-

dependent frequency shift 𝛿𝜔  is called the 

chirp. The spectrum of a chirped pulse is 

broader than that of the unchirped pulse. This 

can be seen by taking the Fourier transform of 

Eq. (28) so that

ሚ𝐴 0, 𝜔 = 𝐴0

2𝜋𝑇0
2

1 + 𝑗𝐶
exp −

𝜔2𝑇0
2

2 1 + 𝑗𝐶
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Figure 9: Electric field of a pulse at the fiber 

input and output. Note that the pulse here 

propagates from the left to the right [1].
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CHIRPED GAUSSIAN PULSES

The spectral half-width (at Τ1 𝑒 intensity point) is given by:

∆𝜔0 = 1 + 𝐶2 ∙ 𝑇0
−1

In the absence of frequency chirp (𝐶 = 0), the spectral width satisfies the relation 

∆𝜔0𝑇0 = 1. Such a pulse has the narrowest spectrum and is called transform-limited. 

The spectral width is enhanced by a factor of 1 + 𝐶2 in the presence of linear chirp, 

as seen in Eq. (32). The pulse-propagation equation (27) can be easily solved in the 

Fourier domain. Its solution is [see Eq. (24)]:

𝐴 𝑧, 𝑡 =
1

2𝜋
න

−∞

∞

ሚ𝐴 0, 𝜔 exp
𝑗

2
𝛽2𝑧𝜔2 +

𝑗

6
𝛽3𝑧𝜔3 − 𝑗𝜔𝑡  𝑑𝜔

where ሚ𝐴 0, 𝜔  is given by Eq. (31) for the Gaussian input pulse. Let us first consider 

the case in which the carrier wavelength is far away from the zero-dispersion 

wavelength so that the contribution of the 𝛽3 term is negligible.
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CHIRPED GAUSSIAN PULSES

The integration in Eq. (33) can be performed analytically with the result:

𝐴 𝑧, 𝑡 =
𝐴0

𝑄(𝑧)
exp

1 + 𝑗𝐶 𝑡2

2𝑇0
2𝑄(𝑧)

where 𝑄 𝑧 = 1 + Τ𝐶 − 𝑗 𝛽2𝑧 𝑇0
2. It shows that a Gaussian pulse remains Gaussian on 

propagation but its width, chirp, and amplitude change as dictated by the factor 𝑄(𝑧). For 

example, the chirp at a distance z changes from its initial value 𝐶 to become

𝐶1 𝑧 = 𝐶 + Τ1 + 𝐶2 𝛽2𝑧 𝑇0
2

Changes in the pulse width with 𝑧 are quantified through the broadening factor given by:

𝑇1

𝑇0
= 1 +

𝐶𝛽2𝑧

𝑇0
2

2

+
𝛽2𝑧

𝑇0
2

2

where 𝑇1 is the half-width defined similar to 𝑇0.
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CHIRPED GAUSSIAN PULSES

Figure 10: Variation of broadening factor with propagated distance for a chirped 

Gaussian input pulse. Dashed curve is for an unchirped Gaussian pulse. For 𝛽2 < 0 

the same curves are obtained if the sign of the chirp parameter 𝐶 is reversed [1].

44



CHIRPED GAUSSIAN PULSES

Figure 10 shows the broadening factor Τ𝑇1 𝑇0 as 

a function of the propagation distance Τ𝑧 𝐿𝐷 , 

where 𝐿𝐷 = Τ𝑇0
2 𝛽2  is the dispersion length. 

An unchirped pulse ( 𝐶 = 0 ) broadens as

1 + Τ𝑧 𝐿𝐷
2 and its width increases by a factor 

of 2 at 𝑧 = 𝐿𝐷. 
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CHIRPED GAUSSIAN PULSES

The chirped pulse, on the other hand, may broaden or 

compress depending on whether 𝛽2  and 𝐶  have the 

same or opposite signs. 

▪ 𝜷𝟐𝑪 > 𝟎  - the chirped Gaussian pulse broadens 

monotonically at a rate faster than the unchirped pulse. 

▪ 𝜷𝟐𝑪 < 𝟎  - the pulse width initially decreases and 

becomes minimum at a distance

𝑧min = Τ𝐶 1 + 𝐶2 𝐿𝐷

The minimum value depends on the chirp parameter as

𝑇1
min = Τ𝑇0 1 + 𝐶2

Physically, when 𝛽2𝐶 < 0 , the GVD-induced chirp 

counteracts the initial chirp, and the effective chirp 

decreases until it vanishes at 𝑧 = 𝑧min.
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CHIRPED GAUSSIAN PULSES

The pulse no longer remains Gaussian on propagation and develops a tail with an 

oscillatory structure. Such pulses cannot be properly characterized by their FWHM.

The RMS width of the pulse defined as

𝜎 = 𝑡2 − 𝑡 2

where the angle brackets denote averaging with respect to the intensity profile, i.e.,

𝑡𝑚 =
∞−׬

∞
𝑡𝑚 𝐴 𝑧, 𝑡 2 𝑑𝑡

∞−׬

∞
𝐴 𝑧, 𝑡 2 𝑑𝑡
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CHIRPED GAUSSIAN PULSES

The broadening factor is defined as Τ𝜎 𝜎0, where 𝜎0 is the RMS width of the input 

Gaussian pulse (𝜎0 = Τ𝑇0 2) is given by

𝜎2

𝜎0
2

= 1 +
𝐶𝛽2𝐿

2𝜎0
2

2

+
𝛽2𝐿

2𝜎0
2

2

+ 1 + 𝐶2 2
𝛽3𝐿

4 2𝜎0
3

2

where 𝐿 is the fiber length.

We assumes that the optical source used to produce the input pulses is nearly 

monochromatic. To account for the source spectral width, we must treat the optical 

field as a stochastic process and consider the coherence properties of the source 

through the mutual coherence function.
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CHIRPED GAUSSIAN PULSES

When the source spectrum is Gaussian with the RMS spectral width 𝜎𝜔 , the 

broadening factor is

𝜎2

𝜎0
2

= 1 +
𝐶𝛽2𝐿

2𝜎0
2

2

+ 1 + 𝑉𝜔
2 𝛽2𝐿

2𝜎0
2

2

+ 1 + 𝐶2 + 𝑉𝜔
2 2 𝛽3𝐿

4 2𝜎0
3

2

where 𝑉𝜔 is defined as 𝑉𝜔 = 2𝜎𝜔𝜌0.

It provides an expression for dispersion-induced broadening of Gaussian input 

pulses under quite general conditions.
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LIMITATIONS ON THE BIT RATE

The limitation imposed on the bit rate by fiber dispersion can be quite different 

depending on the source spectral width. It is instructive to consider the following 

two cases separately.

▪ Optical Sources with a Large Spectral Width.

▪ Optical Sources with a Small Spectral Width.

Bit rate is the number of bits that are conveyed or processed per unit of time.
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OPTICAL SOURCES WITH A LARGE 
SPECTRAL WIDTH
This case corresponds to 𝑽𝝎 ≫ 𝟏.

Assume operating away from the zero-dispersion wavelength so that the 𝛽3 term can 

be neglected. For source with a large spectral width, the effects of frequency chirp 

are negligible (𝐶 = 0). We obtain

𝜎2 = 𝜎0
2 + 𝛽2𝐿𝜎𝜔

2 ≡ 𝜎0
2 + 𝐷𝐿𝜎𝜆

2

where 𝜎𝜆 is the RMS source spectral width in wavelength units. The output pulse 

width is thus given by

𝜎 = 𝜎0
2 + 𝜎𝐷

2

where 𝜎𝐷 ≡ 𝐷 𝐿𝜎𝜆 provides a measure of dispersion-induced broadening.
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OPTICAL SOURCES WITH A LARGE 
SPECTRAL WIDTH
The criterion is that the broadened pulse should remain inside the allocated bit slot, 

𝑇𝐵 = Τ1 𝐵. A commonly used criterion is 𝜎 ≤ Τ𝑇𝐵 4 (for Gaussian pulses at least 95%).

The limiting bit rate is given by 4𝐵𝜎 ≤ 1. In the limit 𝜎𝐷 ≫ 𝜎0, 𝜎 ≈ 𝜎𝐷 = 𝐷 𝐿𝜎𝜆, and 

the condition becomes

𝐵𝐿|𝐷|𝜎𝜆 ≤
1

4

At the zero-dispersion wavelength, 𝛽2 = 0. We obtain

𝜎2 = 𝜎0
2 +

1

2
𝛽3𝐿𝜎𝜔

2 2 ≡ 𝜎0
2 +

1

2
𝑆𝐿𝜎𝜆

2 2

where 𝑆 is the differential-dispersion parameter and defined in Eq. (12).
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OPTICAL SOURCES WITH A LARGE 
SPECTRAL WIDTH
The output pulse width is 𝜎𝐷 ≡ 𝑆 𝐿𝜎𝜆

2 ≤
1

2
. When 𝜎𝐷 ≫ 𝜎0, the limitation on the bit 

rate is governed by

𝐵𝐿 𝑆 𝜎𝜆
2 ≤

1

8

Example:

In case of a light-emitting diode for which 𝜎𝜆 ≈ 15 𝑛𝑚.

By using 𝐷 = 17 Τps (nm ∙ km) at 1.55 µm, we get 𝐵𝐿 < 1 ΤGb s ∙ km.

At the zero-dispersion wavelength, BL can be increased to 20 (Gb/s)∙km for a typical 

value 𝑆 = 0.08 Τps (nm2 ∙ km).
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OPTICAL SOURCES WITH A SMALL 
SPECTRAL WIDTH
This case corresponds to 𝑽𝝎 ≪ 𝟏.

we neglect the 𝛽3 term and set 𝐶 = 0

𝜎 = 𝜎0 +
𝛽2𝐿

2𝜎0

2

≡ 𝜎0
2 + 𝜎𝐷

2

In the case of a narrow source spectrum, dispersion-induced broadening depends 

on the initial width 𝜎0, whereas it is independent of 𝜎0 when the spectral width of the 

optical source dominates.

By choosing an optimum value of 𝜎0, 𝜎 can be minimized. For 𝜎0 = 𝜎𝐷 = Τ𝛽2 𝐿 2, it is 

given by 𝜎 = 𝛽2 𝐿.
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OPTICAL SOURCES WITH A SMALL 
SPECTRAL WIDTH
The limiting bit rate is obtained by using 4𝐵𝜎 ≤ 1 and leads to the condition

𝐵 𝛽2 𝐿 ≤
1

4

The difference between a small spectral width to a large spectral width that the bit 

rate (𝐵) is scales as 𝐿− Τ1 2 rather than 𝐿−1.
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OPTICAL SOURCES WITH A SMALL 
SPECTRAL WIDTH

Figure 11: Limiting bit rate of single-mode fibers as a function of the fiber length for 

𝜎𝜆 = 0,1,5 nm. The case of 𝜎𝜆 = 0 corresponds to the case of an optical source whose 

spectral width is much smaller than the bit rate [1].
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OPTICAL SOURCES WITH A SMALL 
SPECTRAL WIDTH
Close to the zero-dispersion wavelength, 𝛽2 ≈ 0, we obtain

𝜎2 = 𝜌0
2 +

1

2
Τ𝛽3𝐿 4𝜌0

2 2 ≡ 𝜌0
2 + 𝜌𝐷

2

The limiting bit rate is obtained by using the condition 4𝐵𝜎 ≤ 1,

𝐵 𝛽3 𝐿 Τ1 3 ≤ 0.324

The dispersive effects are most forgiving in this case. When 𝛽3 = 0.1 Τps3 km, the bit 

rate can be as large as 150 Gb/s for 𝐿 = 100 km.

The performance of a lightwave system can be improved considerably by operating 

it near the zero-dispersion wavelength of the fiber and using optical sources with a 

relatively narrow spectral width.
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EFFECT OF FREQUENCY CHIRP

Optical pulses are often non-Gaussian and may exhibit 
considerable chirp.

In a super-Gaussian model, the initial field is given by

𝐴 0, 𝑇 = 𝐴0 exp −
1 + 𝑗𝐶

2

𝑡

𝑇0

2𝑚

where the parameter 𝑚 controls the pulse shape.

▪ 𝑚 = 1 - chirped Gaussian pulse.

▪ Large value of m - nearly rectangular with sharp leading 
and trailing edges.

The limiting bit rate-distance product 𝐵𝐿  is found by 
requiring that the RMS pulse width does not increase 
above a tolerable value.
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Figure 12: Profile of the super-

Gaussian beam for various 

values of parameter 𝑛 [2].



EFFECT OF FREQUENCY CHIRP

▪ The 𝐵𝐿 product is smaller for super-

Gaussian pulses because such pulses 

broaden more rapidly than Gaussian 

pulses.

▪ The 𝐵𝐿  product is reduced 

dramatically for negative values of the 

chirp parameter 𝐶  due to enhanced 

broadening occurring when 𝛽2𝐶  is 

positive.
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Figure 13: Dispersion-limited 𝐵𝐿 product as 

a function of the chirp parameter for 

Gaussian (solid curve) and super-Gaussian 

(dashed curve) input pulses [1].
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