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OUTLINE

▪ Introduction

▪ Reflection and refraction

▪ Bibliography
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TELEPHONE FRENCH PREDICTION FOR THE 
YEAR 2000
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COMMUNICATION: MORSE
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WHY WE CAN'T LIVE WITHOUT FIBER 
OPTICS

Figure 1: Fiber optics communication
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WHY WE CAN'T LIVE WITHOUT FIBER 
OPTICS
Lightwave communications is a necessity for the information age.

1) Transporting massive amounts of data over long distances.

2) Optical links provide enormous bandwidth.

3) Applications: from global high-capacity networks, which constitute the backbone 

of the internet, to the massively parallel interconnects that provide data 

connectivity inside datacenters and supercomputers.

4) Optical communications is a diverse and rapidly changing field merging experts 

in photonics, communications, electronics, and signal processing.

5) Ever-increasing demands for higher capacity, lower cost, and lower energy 

consumption, while adapting the system design to novel services and 

technologies.

7



WHY WE CAN'T LIVE WITHOUT FIBER 
OPTICS
▪ Optical fibers for next generation 

optical networks.

▪ Amplification and regeneration.

▪ Spatial multiplexing.

▪ Coherent transceivers.

▪ Modulation formats.

▪ Digital signal progressing.

▪ Optical signal processing.
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▪ Nonlinear channel modeling and 
mitigation.

▪ Forward error correction.

▪ Long-haul networks.

▪ Optical integration and silicon 
photonics.

▪ Optical wireless communications.

▪ Quantum communication.



HISTORY

▪ Data transmission in 1960 - MW radio links 

(300-3000 kHz; includes 525-1715 kHz, AM 

radio broadcasting).

▪ Bandwidth limitations of radio links lead to 

development of mm wave metallic waveguides.

▪ Charlie Kau and George Hockham 1966 low 

loss (<20 dB/km) fiber 2009 Nobel Prize 

(Charlie Kau).
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HISTORY

▪ Fiber optics links make use of a transmission 

medium - the fiber with nearly no loss and a 

seemingly infinite bandwidth.

▪ No other communication system has similar 

properties. Consequence: For the first 25-30 

years of the technology, while it supported the 

major information revolutions, NO real 

communication principles had to be invoked 

and all the technology was developed by 

physicists.
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BIT RATE-DISTANCE

Figure 2: Increase in bit rate-distance product BL during the period 1850-2000. The 

emergence of a new technology is marked by a solid circle [1].
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INTERNET TRAFFIC

Figure 3: Internet traffic evolution.
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HISTORY

▪ 1970 - First successfully drawn fiber with a loss of 20 dB/km.

▪ Soon thereafter loss reaches almost the same level as modern fiber.

▪ Next major achievement: RT CW operating diode laser in 1970. Wavelength was 

850 nm.

▪ 1970-1971 - all the components of a fiber optics link were available.

▪ 1980s and 90s - optical fibers were laid down for commercial deployment, 

replacing the older copper wires and communication satellites for long-distance 

transmission.

▪ With society's rapidly growing demands single fiber has been boosted by several 

orders of magnitude, from a few Gb/s in 1990 to hundreds of Tb/s today.
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PRESENT ERA III

▪ Era III: We are currently in the third major era in the age of fiber communications.

▪ The Era I, the era of direct-detection, regenerated systems began in 1977 and 

lasted about 16 years.

14



COMMUNICATIONS SYSTEM

▪ An optical fiber communications system is similar in basic concept to any type of 

communications system.

▪ The basic function is to convey the signal from the information source over the 

transmission medium to the destination.

▪ The communication system consists of a transmitter or modulator linked to the 

information source, the transmission medium, and a receiver or demodulator at the 

destination point.
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OPTICAL FIBER TRANSMISSION SYSTEM

▪ Source of light - LASER, LED or broadband.

▪ Signal - electric signal at entrance converted into the optical signal at transmitter, 

modulating the light intensity.

▪ Speed - NIR light illuminating the fiber propagates in the core with the speed of 

light 𝑣 = 𝑐/𝑛. In glass 𝑣 = 200 Mm/s when 𝑛glass = 1.52.

▪ In order to reach a receiver (detector) - PIN photodiode or avalanche photodiode 

where the optical signal converted back into electrical signal.
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ADVANTAGES OF OPTICAL FIBER 
TRANSMISSION SYSTEM
▪ Immense binary flow rates with order of several Tb/s (under laboratory conditions 

reaching the order of 10 Tb/s) which impossible while using copper-based media.

▪ Low attenuation - the signal can be transmitted over long distances without 

regeneration.

▪ Do not create external electromagnetic field, therefore they belong to media hard 

to be listened in devices.

▪ No inter-fiber crosstalk.

▪ Resistance to external electromagnetic field perturbations.

▪ Reliable signal due to the bit error rate (BER) lower than 1010.
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H.W.: SELF-READING

J. Opt. 18 (2016) 063002 (40pp)

Roadmap of optical communications

Summarize:

[1] Introduction.

[2] History.
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LIMITATIONS

Figure 4: Limitations: fiber loss, fiber dispersion.
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FIBER OPTIC NETWORK OPTICAL 
WAVELENGTH TRANSMISSION BANDS
Table 1: wavelength transmission bands
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Band name Wavelengths Description

O-band (original) 1260-1360 nm Original band, PON upstream

E-band (extended) 1360-1460 nm Water peak band

S-band (short) 1460-1530 nm PON downstream

C-band (conventional) 1530-1565 nm Lowest attenuation, original DWDM

L-band (long) 1565-1625 nm Low attenuation, expanded DWDM

U-band (ultra-long) 1625-1675 nm Ultra-long wavelength



PHYSICAL CONSTANTS, SI

Table 2: physical constants
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Symbol Term Value Units

𝑘 Boltzmann's constant 1.38∙10-23 j/K

ℎ Planck's constant 6.626∙10-34 j∙s

𝑞 Electron charge 1.602∙10-19 Coulomb

𝑐 Speed of light in vacuum 2.998∙108 m/s

𝑇 Absolute temperature 𝑇𝐾 = 𝑇𝐶 + 273 Kelvin

𝜀0 Vacuum permittivity 8.854∙10-12 F/m

𝜇0 Vacuum permeability 4π∙10-7 H/m



PARAMETERS

Table 3: Parameters, SI
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Symbol Term Units

𝜆 Vacuum wavelength nm

∆𝜆 Wavelength difference nm

𝛼 Attenuation 1/km

𝐷 Dispersion parameter ps/(nm∙km)

𝐸𝑝 Photon energy J

ǁ𝜈 Wavenumber (spectroscopy) cm-1

𝑇𝐶 Temperature C



CONVERSION TABLE

Table 4: Conversion table
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Symbol Term Value Units

𝑓 Frequency 𝑓 = Τ𝑐 𝜆 Hz

∆𝑓 Frequency difference ∆𝑓 = Τ−𝑐∆𝜆 𝜆2 Hz

𝛼dB Attenuation 𝛼dB = 4.343𝛼 dB/km

𝛽2 Dispersion parameter 𝐷 = −
2

𝜆2 𝛽2 ps2/nm

𝜆 Wavelength 𝜆 = Τℎ𝑐 𝐸𝑝 nm

𝜆 Wavelength 𝜆 = Τ107 ǁ𝜈 nm

𝑇𝐹 Temperature 𝑇𝑐 =
5

9
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ELECTROMAGNETIC RADIATION

▪ Term Light defines Electromagnetic (EM) radiation.

▪ Optical fiber is a waveguide used for transmission of light. It consists of 1) a 

dielectric core and 2) surrounded layer named cladding. 

▪ Guiding condition: Refractive index of cladding < core.

▪ Total Internal Reflection: The light inside the core is trapped due to TIR.

▪ Propagation condition: TIR occurs at the core-cladding interface when the light 

inside the core of the fiber is incident at an angle greater than the critical angle 𝜃𝑐 

and returns to the core lossless allowing the light propagation along the fiber.
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OPTICAL FIBER

In its simplest form, a step-index fiber consists of a 
cylindrical core surrounded by a cladding layer 
whose index is slightly lower than the core.

Both core and cladding use silica as the base 
material; the difference in the refractive indices is 
realized by doping the core, or the cladding, or both.

▪ Dopants such as GeO2 and P2O5 increase the 
refractive index of silica and are suitable for the 
core.

▪ Dopants such as B2O3 and fluorine decrease the 
refractive index of silica and are suitable for the 
cladding.
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FABRICATION METHODS

Several methods can be used to make the preform. The three commonly used 

methods are modified chemical-vapor deposition (MCVD), outside-vapor deposition 

(OVD), and vapor-axial deposition (VAD).

Fabrication of telecommunication-grade silica fibers involves two stages:

1) First stage - making a cylindrical preform with the desired refractive-index 

profile. The preform is typically 1 m long and 2 cm in diameter and contains core 

and cladding layers with correct relative dimensions.

2) Second stage - the preform is drawn into a fiber by using a precision-feed 

mechanism that feeds the preform into a furnace at the proper speed.
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MCVD PROCESS
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MCVD PROCESS

The MCVD process is also known as the inner-vapor-deposition method, as the core 

and cladding layers are deposited inside a silica tube.

Figure 5: MCVD process commonly used for fiber fabrication [1].
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MCVD PROCESS

In this process, successive layers of SiO2 are deposited on the inside of a fused silica tube 

by mixing the vapors of SiCl4 and O2 at a temperature of about 1800C. To ensure 

uniformity, a multiburner torch is moved back and forth across the tube length using an 

automatic translation stage. The refractive index of the cladding layers is controlled by 

adding fluorine to the tube. When a sufficient cladding thickness has been deposited, the 

core is formed by adding the vapors of GeCl4 or POCl3. These vapors react with oxygen 

to form the dopants GeO2 and P2O5:

GeCl4 + O2  →  GeO2 + 2Cl2

4POCl3 + 3O2 → 2P2O5 + 6Cl2

The flow rate of GeCl4 or POCl3 determines the amount of dopant and the corresponding 

increase in the refractive index of the core. A triangular-index core can be fabricated 

simply by varying the flow rate from layer to layer. When all layers forming the core have 

been deposited, the torch temperature is raised to collapse the tube into a solid rod of 

preform.
29



FIBER PREFORMS

Figure 6: (a) Fiber preform [from LEONI fiber optics]. (b) Fiber special preform 

[from kohokukogyo]
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FIBER DRAWING

▪ The preform is fed into a furnace in a controlled 

manner where it is heated to a temperature of 

about 2000C.

▪ The melted preform is drawn into a fiber by using 

a precision-feed mechanism.

▪ The fiber diameter is monitored optically by 

diffracting light emitted by a laser from the fiber.

▪ A polymer coating is applied to the fiber during 

the drawing step.
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Figure 7: Apparatus used for fiber 

drawing [from Fiber Optic Center].



FIBER DRAWING

Figure 8: Fiber drawing tower, preform and furnace [from Thorlabs] 
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TYPES OF OPTICAL FIBERS

▪ Number of modes (single/multi mode).

▪ Refraction index profile (step-index or graded index).

▪ Material (glass, plastic, semiconductor).

▪ Dispersion (natural, shifted fiber - DSF, dispersion widened fiber - DWF, reverse 

dispersion).

▪ Signal processing ability (passive-data transmission, active-amplifier, laser).

▪ Polarization (classic, maintaining, polarized).
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SINGLE MODE VS MULTIMODE

▪ Single mode fibers (SMF) - the core diameter 

5-10 µm. The cladding diameter 125 µm.

▪ Multimode fibers (MMF) - the core diameter 

can be 50, 62.5 µm or more. The typical 

cladding diameter is 125 µm (can be bigger).
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Figure 9: Electric field amplitude profiles for 

guided modes of a fiber [RP photonics].



TYPES OF OPTICAL FIBERS

Figure 10: Typical refractive index progression for (a) a step-index, (b) graded index 

and (c) single mode fiber [2].
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DISPERSION SHIFTED FIBER - DSF

▪ Chromatic dispersion in a single-mode fiber is the sum of material dispersion and 

waveguide dispersion.

▪ The waveguide dispersion can be controlled by proper choice of the waveguide 

parameters, while the material dispersion is almost independent of these 

parameters.

▪ The zero-dispersion wavelength can be made coincident with the 1.55 µm 

minimum loss wavelength of optical fibers.

▪ In addition, the dispersion can be very small over a wide wavelength range are 

called dispersion flattened fibers (DFFs).
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DISPERSION SHIFTED FIBER - DSF

Figure 11: Several index profiles used in the design of single-mode fibers. Upper 

and lower rows correspond to standard and dispersion-shifted fibers, respectively 

[1].
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CLASSIFICATION OF OPTICAL FIBERS

Figure 12: Typical wavelength dependence of the dispersion parameter 𝐷  for 

standard, dispersion-shifted, and dispersion-flattened fibers [1].
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THE DESIGN OF SINGLE-MODE FIBERS

In the axially symmetric single-mode fiber, there exist two orthogonally polarized 

modes. They are known as HE11
𝑥  and HE11

𝑦
 modes in accordance with their 

polarization directions. If the fiber waveguide structure is truly axially symmetric, 

these orthogonally polarized modes have the same propagation constants and thus 

they are degenerate. This is why such fiber is called "single-mode" fiber.

In practical fibers, however, an axial nonsymmetry is generated by the core 

deformation and/or core eccentricity to the outer diameter, and it causes a slight 

difference in the propagation constants of the two polarization modes. In such fibers, 

the state of polarization (SOP) of the output light randomly varies, since the mode 

coupling take place between HE11
𝑥  and HE11

𝑦
 modes, which is caused by fluctuations 

in core diameter along the z-direction, vibration and temperature variations.

39



THE DESIGN OF SINGLE-MODE FIBERS

Birefringent fibers have been proposed and fabricated to solve such polarization 

fluctuation problems.

Figure 13: Cross-sectional structures of typical birefringent fibers: (a) elliptic-core 

fiber, (b) side-pit or side-tunnel fibers, (c) PANDA fiber, (d) Bow-tie fiber, and (e) 

elliptical-jacket fiber [3].
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HOME COMPUTER PREDICTION FOR YEAR 
2004
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REFLECTION AND REFRACTION

Assumptions:

▪ Plane wave propagation.

▪ Linear medium.

▪ Isotropic medium.

▪ Smooth planar optical interface.

Figure 14: Plane wave reflection 

and refraction at an optical 

interface. 42



MAXWELL’S EQUATIONS

Maxwell's equations, or Maxwell–Heaviside 

equations, are a set of coupled partial differential 

equations that, together with the Lorentz force law, 

form the foundation of classical electromagnetism, 

classical optics, and electric circuits. The equations 

provide a mathematical model for electric, optical, and 

radio technologies, such as power generation, electric 

motors, wireless communication, lenses, radar etc. 
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MAXWELL’S EQUATIONS

▪ The link between electricity and magnetism was completed by the work of James 

Clerk Maxwell. 

▪ He took the four equations made by Gauss (also Coulomb), Faraday, and Amp’ere 

and by making some corrections he developed mathematically the connection 

between those equations.

▪ In 1861, Maxwell presented a set of coupled equations (around 20 equations) that 

describe electromagnetic phenomena varying in time which are called Maxwell’s 

equations. 

▪ The four equations known today were obtained by Oliver Heaviside, using vector 

notation to simplify 12 of the 20 equations into the 4 known Maxwell’s equations.
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∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ Ԧ𝐽

∇ ∙ 𝐷 = 𝜌ext

∇ ∙ 𝐵 = 0



MAXWELL’S EQUATIONS

▪ These equations can be used as a mathematical model for phenomena in nature 

and for electrical and optical problems. 

▪ In a paper published in 1865, Maxwell has derived a wave equation from his 

equations thus discovering electromagnetic waves. 

▪ He suggested that light is an electromagnetic wave and showed this hypothesis to 

be consistent with experimental results. Therefore, he concluded that light is an 

electromagnetic wave.

▪ In 1886-1889, German physicist Heinrich Rudolf Hertz performed a series of 

experiments that proved that light is an electromagnetic wave as was analytically 

calculated by Maxwell.
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MAXWELL’S EQUATIONS

Assumptions:

1. The parameters of the medium in a linear 

system don’t dependent on the electric field 𝐸 

and the magnetic field 𝐻:   𝜀 = 𝜀𝑟𝜀0 𝜇 = 𝜇0.

2. The medium parameters 𝜇 and 𝜀 are constant 

and time independent.

3. The medium is isotropic ⇒ 𝜇 and 𝜀 are direction 

independent.

4. The medium is dielectric ⇒ 𝐽 = 0 and 𝜌ext = 0
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MAXWELL’S EQUATIONS

Assuming linear, homogeneous and isotropic medium, Maxwell’s equations are 

defined as

where 𝐸 is the electric field vector, 𝐷 is the electric displacement field vector, 𝐻 is 

the magnetic field vector and 𝐵 is the magnetic flux density vector, 𝜌ext and 𝐽 are the 

charge and current densities, respectively.

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡
+ Ԧ𝐽

∇ ∙ 𝐷 = 𝜌ext

∇ ∙ 𝐵 = 0

Faraday’s law

Gauss law

Gauss's law for magnetism

Ampere-Maxwell law 2

4

3

1
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MAXWELL’S EQUATIONS

▪ The current density is defined as 𝐽 = 𝜎𝐸, where 𝜎 is the electric conductivity, and 

only exists in ohmic material, such as metals and semiconductors.

▪ In dielectric medium, 𝐽 = 0 and 𝜌ext = 0

▪ 𝐷 and 𝐵 are related to the field vectors and are defined as

𝐷 = 𝜀0𝐸 + 𝑃

𝐵 = 𝜇0 𝐻 + 𝑀

where 𝜀0 and 𝜇0 are the electric permittivity and magnetic permeability of vacuum, 

respectively, 𝑃 is the polarization and 𝑀 is the magnetization.

48

5

6



POLARIZATION AND MAGNETIZATION

In the case of isotropic material, the polarization and the magnetization are given by

𝑃 = 𝜀0𝜒𝐸 𝑀 = 𝜒𝐻

and

𝐷 = 𝜀0𝐸 + 𝑃 = 𝜀0𝜀𝑟𝐸 = 𝜀𝐸

𝐵 = 𝜇0 𝐻 + 𝑀 = 𝜇0𝜇𝑟𝐻 = 𝜇𝐻

where 𝜇 is the permeability, 𝜀 is the permittivity, 𝑐 is the speed of light in vacuum, 𝜒 is 

the electric susceptibility and 𝜀𝑟 is called the relative permittivity and 𝜇𝑟 the relative 

permeability, which in case of non-magnetic material is 𝜇𝑟 = 1.
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MAXWELL’S EQUATIONS

▪ Maxwell’s equations for dielectric waveguide are given as

where

𝐵 = 𝜇𝐻 𝐷 = 𝜀𝐸

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡

∇ ∙ 𝐷 = 0

∇ ∙ 𝐵 = 0

8

10

9

7
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BOUNDARY CONDITIONS

▪ The boundary conditions define the behavior of 
the electric and the magnetic fields on the 
boundary.

▪ Assume two different media with permittivity of 𝜀1 
and 𝜀2, as shown in the figure.

▪ The electric field - 𝐸 and the magnetic field 𝐻 can 
be decomposed to the tangential (𝑡) and vertical 
(𝑛) components.

𝐸 = 𝐸𝑛 + 𝐸𝑡 𝐻 = 𝐻𝑛 + 𝐻𝑡
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑡
▪ Assume electric field in medium 1 ( 𝜀1 ). From 

Faraday’s law:

ර 𝐸 ∙ 𝑑𝑙 = − ඵ
𝜕𝐵

𝜕𝑡
𝑑𝐴 = 0

▪ Faraday’s law for closed loop 𝑎 ⇒ 𝑏 ⇒ 𝑐 ⇒ 𝑑 is:

ර 𝐸 ∙ 𝑑𝑙 = න
𝑎

𝑏

… + න
𝑏

𝑐

… + න
𝑐

𝑑

… + න
𝑑

𝑎

… = 0

▪ Assuming 𝑎 − 𝑑 and 𝑏 − 𝑐 equal 0 then:

ර 𝐸 ∙ 𝑑𝑙 = න
𝑎

𝑏

… + න
𝑐

𝑑

…
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑡
▪ 𝑎׬

𝑏
… ≈ 𝐸𝑡1Δ𝑙  and ׬𝑐

𝑑
… ≈ −𝐸𝑡2Δ𝑙  therefore 𝐸𝑡1Δ𝑙

− 𝐸𝑡2Δ𝑙 = 0 and:

𝐸𝑡1 = 𝐸𝑡2

▪ The tangential components of the electric field are 
continuous on the boundary.

▪ In addition, 𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗 therefore:

𝐷𝑡1

𝜀1
=

𝐷𝑡2

𝜀2

The tangential components of the electric 
displacement field are not continuous on the 
boundary.

53



BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑛
▪ From Gauss’s law:

ර 𝐷 ∙ 𝑑𝐴 = ම 𝜌 𝑑𝑣 = 𝑄enclosed

▪ The figure shows that the surrounded charge is a 
surface.

▪ We write Gauss’s law as:

ර 𝐷 ∙ 𝑑𝐴 = ඵ 𝜌𝑠 𝑑𝐴

where 𝜌𝑠  (units of [C/m2] is the charge on the 
boundary.
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑛
▪ We write the equation as:

−𝐷𝑛1∆𝐴1 + 𝐷𝑛2∆𝐴2 = 𝜌𝑠∆𝐴

▪ Vertical vectors are defined far from the boundary 

and the electric field is in medium 1.

▪ Since ∆𝐴1 = ∆𝐴2 = ∆𝐴 therefore:

−𝐷𝑛1 + 𝐷𝑛2 = 𝜌𝑠
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE ELECTRIC FIELD - 𝐸𝑛
▪ In addition:

−𝜀1𝜀0𝐸𝑛1 + −𝜀2𝜀0𝐸𝑛2 = 𝜌𝑠

▪ Without charge on the boundary, we get:

𝐷𝑛1 = 𝐷𝑛2

and

𝜀1𝐸𝑛1 = 𝜀2𝐸𝑛2

The vertical components of the electric 

displacement field are continuous between the two 

media but the vertical components of the electric 

field are not.
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑡
▪ Assume boundary between two media with 

different permeability of 𝜇1 and 𝜇2.

▪ Assume Ampere’s law without currents on the 
boundary:

ර 𝐻 ∙ 𝑑𝑙 = ඵ 𝐽 +
𝜕𝐷

𝜕𝑡
𝑑𝐴 = 0

For closed loop is:

ර … = න
𝑎

𝑏

… + න
𝑏

𝑐

… + න
𝑐

𝑑

… + න
𝑑

𝑎

… = 0

▪ Assuming 𝑎 − 𝑑 and 𝑏 − 𝑐 equal 0 then:

ර 𝐻 ∙ 𝑑𝑙 = න
𝑎

𝑏

… + න
𝑐

𝑑

… = 0
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BOUNDARY CONDITIONS FOR THE TANGENTIAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑡
▪ 𝑎׬

𝑏
… ≈ 𝐻𝑡1Δ𝑙  and ׬𝑐

𝑑
… ≈ −𝐻𝑡2Δ𝑙  therefore 𝐻𝑡1Δ𝑙

− 𝐻𝑡2Δ𝑙 = 0 and so:

𝐻𝑡1Δ𝑙 = 𝐻𝑡2Δ𝑙

The tangential components of the magnetic field are 

continuous on the boundary between the two media.

▪ From 𝐵 = 𝜇𝐻 we get:

𝐵𝑡1

𝜇1

=
𝐵𝑡2

𝜇2

The tangential component of the magnetic flux 

density are not continuous on the boundary 

between the two media.
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑛
▪ From magnetic Gauss’s law:

ර 𝐵 ∙ 𝑑𝐴 = 0

▪ From the figure:

ර … = ර
top

… + ර
side

… + ර
bottom

… = 0

▪ We shrink the cylinder - ׯside
…  → 0 therefore:

ර
top

… ≈ 𝐵𝑛1∆𝐴 and ර
bottom

… ≈ 𝐵𝑛2∆𝐴

▪ We get:
𝐵𝑛1 = 𝐵𝑛2  𝜇1𝐻𝑛1 = 𝜇2𝐻𝑛2
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BOUNDARY CONDITIONS FOR THE VERTICAL 
COMPONENT OF THE MAGNETIC FIELD - 𝐻𝑛
The vertical components of the magnetic flux 

density are continuous on the boundary, but the 

vertical components of the magnetic field are not.
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FRESNEL'S 
EQUATIONS

▪ As light hits the boundary of two 

materials, the power is split and a 

fraction of the power is refracted while 

the rest is reflected. 

▪ In 1825, Fresnel derived a set of 

equations that defines the relation 

between the reflectance or the 

transmittance to the incident angle and 

the indices of the material. 
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SNELL’S LAW OF REFRACTION

▪ When light hits the boundary between two materials, the light is reflected and 

refracted. In the transition from one medium to another medium, the propagation 

angle changes. 

▪ In 1621, Snell discovered empirically the relationship between the indices of the 

materials and the propagation angles of the light.

▪ The refraction angle can be calculated by Snell’s law of refraction which is defined 

as
sin 𝜃1

sin 𝜃2
=

𝑣1

𝑣2
=

𝑛2

𝑛1

where 1 is the incident medium, 2 is the transmitted medium, 𝑣 is the velocity, 𝜃 is 

the angle of the light in the medium and 𝑛 is the refractive index.
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FRESNEL REFLECTION COEFFICIENT

The amplitude and phase of an optical field reflected back to the same side of the 

interface:

We will consider parallel field components: 𝐸𝑖
∥, 𝐸𝑡

∥ and 𝐸𝑟
∥.

They can be decomposed into components parallel with and perpendicular to the 

interface; the parallel components are 𝐸𝑖
∥ cos 𝜃1 , 𝐸𝑡

∥ cos 𝜃2 and −𝐸𝑟
∥ cos 𝜃1 , 

respectively, which can be derived from Fig. 13.

Because of the field continuity across the interface, we have:

𝐸𝑖
∥ − 𝐸𝑟

∥ cos 𝜃1 = 𝐸𝑡
∥ cos 𝜃2

The magnetic field components associated with 𝐸𝑖
∥, 𝐸𝑡

∥ and 𝐸𝑟
∥ are perpendicular to 

the incident plane.
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FRESNEL REFLECTION COEFFICIENT

The magnetic field components associated with 𝐸𝑖
∥ , 𝐸𝑡

∥  and 𝐸𝑟
∥  have to be 

perpendicular to the incident plane. They are:

𝐻𝑖
⊥ =

𝜀1

𝜇1
𝐸𝑖

∥ 𝐻𝑡
⊥ =

𝜀2

𝜇2
𝐸𝑡

∥ 𝐻𝑟
⊥ =

𝜀1

𝜇1
𝐸𝑟

∥

With electrical permittivities 𝜀1,2  and magnetic permittivities 𝜇1,2  of the optical 

materials at two sides of the interface.

Since 𝐻𝑖
⊥, 𝐻𝑟

⊥ and 𝐻𝑡
⊥ are all parallel to the interface (although perpendicular to 

the incident plane), magnetic field continuity requires 𝐻𝑖
⊥ + 𝐻𝑟

⊥ = 𝐻𝑡
⊥. Assume that 

𝜇1 = 𝜇2, 𝜀1 = 𝑛1 and 𝜀2 = 𝑛2 and then:

𝑛1𝐸𝑖
∥ + 𝑛1𝐸𝑟

∥ = 𝑛2𝐸𝑡
∥
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FRESNEL’S FIELD REFLECTIVITY

The reflectivity for optical field components parallel to the incident plane as:

𝜌∥ =
𝐸𝑟

∥

𝐸𝑖
∥

=
𝑛1 cos θ2 − 𝑛2 cos θ1

𝑛1 cos θ2 + 𝑛2 cos θ1
 

In order to eliminate 𝜃2, we can use Snell’s Law:

𝜌∥ =

𝑛1 1 −
𝑛1
𝑛2

sin 𝜃1

2

− 𝑛2 cos θ1

𝑛1 1 −
𝑛1
𝑛2

sin 𝜃1

2

+ 𝑛2 cos θ1

Similar analysis can also find the reflectivity for optical field components 
perpendicular to the incident plane as:
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FIELD REFLECTIVITY

Similar analysis can also find the reflectivity for optical field components 

perpendicular to the incident plane as:

𝜌⊥ =
𝐸𝑟

⊥

𝐸𝑖
⊥

=
𝑛1 cos θ1 − 𝑛2 cos θ2

𝑛1 cos θ1 + 𝑛2 cos θ2

𝜌⊥ =

𝑛1 cos θ1 − 𝑛2 1 −
𝑛1
𝑛2

sin θ1

2

𝑛1 cos θ1 + 𝑛2 1 −
𝑛1
𝑛2

sin θ1

2
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FIELD REFLECTIVITY

Power reflectivities for parallel and perpendicular field components are therefore:

𝑅∥ = 𝜌∥
2

=
𝐸𝑟

∥

𝐸𝑖
∥

2

and

𝑅⊥ = 𝜌⊥
2 =

𝐸𝑟
⊥

𝐸𝑖
⊥

2
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FRESNEL'S POWER TRANSMISSION 
COEFFICIENTS
According to energy conservation, the power transmission coefficients can be found 

as:

𝑇∥ =
𝐸𝑡

∥

𝐸𝑖
∥

2

= 1 − 𝜌∥
2

and

𝑇⊥ =
𝐸𝑡

⊥

𝐸𝑖
⊥

2

= 1 − 𝜌⊥
2

In practice, for an arbitrary incidence polarization state, the input field can always be 

decomposed into 𝐸∥ and 𝐸⊥ components. Each can be treated independently.
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TOTAL INTERNAL REFLECTION IN FIBERS

Figure 15: Left: total internal reflection, which happens because the material of the 

cladding (shown on the right) has a lower index of refraction compared to the core.
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CONCEPT OF TOTAL INTERNAL REFLECTION

Figure 16: A laser beam through acrylic shows the concept of total internal reflection 

(the light doesn't continue straight through the edge of the glass but bounces back 

and forth until exiting at the end).
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CRITICAL ANGLE - 𝜃𝑐
▪ However, when light hits the boundary between high to low refractive index 

material, above a specific angle, called the critical angle, the light will be fully 

reflected. 

▪ This phenomenon is called total internal reflection (TIR). According to Fresnel 

Equations (15) and (17), total reflection ( 𝜌∥ = 𝜌⊥ = 1) occurs when
𝑛1

𝑛2
sin 𝜃1 = 1 

and the critical angle is defined as:

𝜃𝑐 = 𝜃1 = 𝑠𝑖𝑛−1
𝑛2

𝑛1

(22)
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CRITICAL ANGLE

Obviously, the necessary condition to have a critical angle depends on the interface 

condition. 

▪ if 𝒏𝟏 < 𝒏𝟐: there is no real solution for 𝜃𝑐 = sin−1 𝑛2

𝑛1
.

It means that when a light beam goes from a low index material to a high index 

material, total reflection is not possible.

▪ if 𝒏𝟏 > 𝒏𝟐: there is a real solution for 𝜃𝑐 = sin−1 𝑛2

𝑛1
. 

Therefore, total reflection can only happen when a light beam launches from a high 

index material to a low index material. 
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CRITICAL ANGLE

▪ It is important to note that at a larger incidence angle 𝜃1 > 𝜃𝑐, 1 −
𝑛1

𝑛2
sin 𝜃1

2

< 0 

and 1 −
𝑛1

𝑛2
sin 𝜃1

2

 becomes imaginary. 

▪ Equations (2) and (4) show that if 1 −
𝑛1

𝑛2
sin 𝜃1

2

 is imaginary, both 𝜌∥
2
 and 𝜌⊥

2 

are equal to 1. The important conclusion is that for all incidence angles satisfying 

𝜃1 = 𝜃𝑐 total internal reflection will happen with 𝑅 = 1.
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CRITICAL ANGLE

Figure 17: Reflection at a planar interface between unbounded regions of refractive 
indices 𝑛co and 𝑛cl showing (a) total internal reflection and (b) partial reflection and 
refraction.
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EVANESCENT FIELD

An evanescent field is a side effect of TIR and appears beyond the boundary surface. 
Specifically, even though the entire incident wave is reflected back into the 
originating medium (TIR), a fraction of the field penetrates into the medium with a 
lower 𝑛 at the boundary. The evanescent wave is leading to the Goos-Hanchen shift.

Figure 18: Total internal reflection and Goos-Hänchen shift. 𝑅 is the behavior of the 
partially reflected beam, 𝑇 is the behavior of the total internal reflection beam and 𝑑 
is the Goos-Hänchen shift.

𝑛2 > 𝑛1

𝑛2 > 𝑛3 > 𝑛1

Alina Karabchevsky, Integrated Photonics 75



EVANESCENT FIELD

▪ The first to observe the phenomenon was Isaac Newton in 1726. In the experiment, 

he used two identical prisms with a distance between them of a few tens of 

nanometers. While illuminating a prism with an angle bigger than the critical angle 

he saw that the light pass the gap and move to the second prism. This phenomenon 

is described as optical tunneling which can be used for beam splitters and filters.
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EVANESCENT FIELD

▪ Although according to the ray optic model, the light is totally reflected inside the 
guiding layer in the case of guided mode, according to Maxwell’s theory, a fraction 
of the field is penetrating outside the guiding layer to a less dense medium before 
the total internal reflection occurs. This phenomenon contradicts the total internal 
reflection. 

▪ In 1947, Goos and Hanchen observed a small lateral phase shift when the light is 
under total internal reflection. It appears that the wave is reflected from a virtual 
plane from the medium with the lower refractive index as shown in Figure below.
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EVANESCENT FIELD

The reflected wave phase shift is called Goos-Hanchen shift and is defined as:

Φ = −2 tan−1
𝑛2

2 sin2 𝜙 − 𝑛1
2

𝑛2 cos 𝜙

where 𝑛2 is the incident medium (higher refractive index), 𝑛1 is the transmitted 

medium (lower refractive index), and 𝜙 is the incident angle. Goos-Hanchen shift can 

be utilized for characterizing materials in optical microscopy and lithography.
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EVANESCENT FIELD

Due to the penetration beyond the guiding layer, the evanescent field interacts with 

its surroundings and can be utilized for plasmons, sensing and near-field 

microscopy. The penetration depth of the evanescent field to a medium outside the 

guiding layer is defined as:

𝑑𝑝 =
𝜆

2𝜋 𝑛2
2 sin2 𝜙 − 𝑛1

2

where 𝜙 is the incident angle inside the guiding layer. The equation shows that the 

smaller the incident angle, the larger the penetration depth of the evanescent field 

into the medium.
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EVANESCENT FIELD

▪ The transmitted wavevector is: 𝑘𝑡 = 𝑘𝑡 sin θ𝑡 Ƹ𝑥 + 𝑘𝑡 cos θ𝑡 Ƹ𝑧 

▪ If 𝑛1 > 𝑛2, then sin 𝜃𝑡 > 1.

▪ Since sin 𝜃𝑡 =
𝑛1

𝑛2
sin 𝜃𝑖 (Snell’s law),

𝑛1

𝑛2
sin 𝜃𝑖 > 1 for 𝜃𝑖 > 𝜃𝑐 therefore cos 𝜃𝑡 becomes 

complex:

cos θ𝑡 = 1 − sin2 𝜃𝑡 = 𝑗 sin2 𝜃𝑡 − 1
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EVANESCENT FIELD

The electric field of the transmitted plane wave is given by 𝐸𝑡 = 𝐸0𝑒𝑗 ത𝑘𝑡⋅ ҧ𝑟−ω𝑡  

𝐸𝑡 = 𝐸0𝑒𝑗 ത𝑘𝑡⋅ ҧ𝑟−ω𝑡 = 𝐸0𝑒𝑗 𝑘𝑡 sin θ𝑡 𝑥+𝑘𝑡 cos θ𝑡 𝑧−ω𝑡

𝐸𝑡 = 𝐸0𝑒
𝑗 𝑥𝑘𝑡 sin θ𝑡 +𝑧𝑗𝑘𝑡 sin2 θ𝑡 −1−ω𝑡

By substituting 𝑘𝑡 =
𝜔𝑛2

𝑐
 we obtain:

𝐸𝑡 = 𝐸0𝑒−κ𝑧𝑒𝑗 𝑘𝑥−ω𝑡

where 𝑘 =
𝜔𝑛1

𝑐
 and κ =

ω

𝑐
𝑛1

2 sin2 𝜃𝑖 − 𝑛2
2
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EVANESCENT FIELD

The evanescent field has few unique properties:

▪ First, the evanescent field doesn’t propagate in the medium but is a localized oscillating 
electric and/or magnetic field. The Poynting vector normal to the surface is equal to 
zero since it is the average Poynting vector over an oscillation cycle and, therefore, 
equal to zero. 

▪ However, the evanescent field can still interact with the surroundings. The evanescent 
field can be also converted back into radiation/guiding mode. 

▪ By placing two waveguides close to each other the power of mode from one waveguide 
can be transferred to the second waveguide by evanescent field coupling. This is a 
near-field optics effect which is called optical tunneling or tunneling effect. The effect 
can be utilized for couplers such as ring resonators of a chip. 

▪ In addition, by manipulating the evanescent field we can control and affect the guided 
mode, with nanomaterial or metasurface overlayer.
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EVANESCENT FIELD - 
𝑬𝒕 = 𝑬𝟎𝒆−𝛋ො𝒛𝒆𝐣 𝐤ෝ𝒙−𝝎𝒕

1) Appears in the optically less dense medium.

2) Characterized by its propagation in the 𝑥 direction.

3) Characterized by its exponential attenuation in the 

𝑧 direction.

4) No energy flows across the boundary.

5) The component of Poynting vector in the direction 

normal to the boundary is finite, but its time 

average vanishes (what is Poynting vector? what is 

time average Poynting vector?).

6) The Goos-Hanchen effect only occurs for linearly 

polarized light.

7) If the light is circularly or elliptically polarized, it 

will undergo the analogous Imbert–Fedorov effect.

Alina Karabchevsky, Integrated Photonics 83



H.W.: DERIVATION

Goos-Hanchen shift

[1] Derive Goos-Hanchen shift

[2] Schematically illustrate the concept underpinned by your derivations

[3] Summaries the historical evidence of formulation of the Snell's law.

[3] Overview the history of Imbert-Fedorov effect and explain it.

Deadline: Next class
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