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ABSTRACT

Twisted waveguides are promising building blocks for broadband polarization rotation in integrated photonics.
They may find applications in polarization-encoded telecommunications and quantum-optical systems. In our
work, we develop a rigorous modal theory for such waveguides. To this end, we define an eigenmode of a twisted
waveguide as a natural generalization of the eigenmode of a straight waveguide. Using covariant approach for
expressing Maxwell’s equations in helical reference frame, we obtain the eigenmode equation which appears to
be nonlinear with respect to the eigenvalue, i.e. propagation constant. By analyzing the obtained equations we
establish fundamental properties of the eigenmodes and prove their orthogonality. We develop a finite-difference
full-vectorial scheme for solving the eigenmode equation and solve it using two approaches: with perturbation
theory and using routines for nonlinear eigenvalue problems. By analyzing the obtained propagation constants
and modal fields we explain the modal mechanism of polarization rotation in twisted waveguides and explain
qualitatively polarization conversion efficiency dependence on twist length. Although photonic applications are
of our primary concern, our results are general and apply to twisted waveguides of arbitrary architecture.

Keywords: Twisted waveguides, helical coordinates, nonlinear eigenvalue problem, finite-difference method,
eigenmode expansion method, polarization conversion.

1. INTRODUCTION

State-of-the-art technologies in integrated photonic circuits fabrication give freedom to go beyond planar design
and engineer features in all 3 dimensions. Particularly, these technologies allow creation of waveguides with
variable cross-sections of virtually arbitrary shape. If the cross-section of such a waveguide is varied slowly
along propagation direction, this waveguide can serve as an adiabatic mode converter. One of the promising
architectures is a twisted waveguide, i.e., the waveguide with the core twisted along the propagation axis. It was
shown numerically and experimentally, that photonic twisted waveguides can serve as broadband polarization
rotators. 2

In order to analyze light propagation in such waveguides, numerical methods such as Finite-Difference Time
Domain (FDTD), Finite-Element Method (FEM), and Beam Propagation Method (BPM) are normally utilized.
Applied to twisted waveguides, however, these methods suffer from a number of problems. Namely, FDTD and
FEM methods require solving the 3D problem, which makes simulations quite memory- and CPU-demanding.
On the other hand, BPM can be memory and CPU-efficient by sacrificing the precision, especially for high
refractive index contrast platforms. Therefore, eigenmode expansion-based approaches are preferable.

Attempts of solving eigenmode equation for twisted waveguides were made by Lewin et al.>* and by Yabe et
al.>% In these works authors found perturbative expressions to the propagation constants and modal fields in
the particular case of rectangular waveguide with perfectly conducting walls. In another work by Ma et al.”
authors develop a modal theory in helical reference frame, but in the weak-guidance limit.
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In present work we formulate and solve the eigenmode equation for a twisted waveguide with arbitrary cross-
section and establish fundamental properties of its solutions paying special attention to polarimetric properties
of the modes. Additionally, we combine the developed mode solver with eigenmode expansion method solver to
analyze light propagation in twisted waveguides.

2. TWISTED COORDINATES

In order to study twisted waveguides we are going to use twisted coordinates discussed in a number of works.
In this section we outline some important properties of these coordinates.

8-10

Let us denote Cartesian and twisted bases by indices i’ and 4, respectively. The corresponding coordinates
are ' = {z,y,2} and z* = {X,Y, Z}. Coordinate transformation is given by

X =xcosaz + ysinaz
Y = —xsinaz +ycosaz . (1)
Z =z

Accordingly, the inverse transformation is

= XcosaZ —YsinaZ
y=XsinaZ+YcosaZ . (2)
z2=27

From tensor analysis it is known that a coordinate system at any given point P generates two sets of
vectors e(;) and e(”) which form local tangent and cotangent bases, respectively.' 1% The basis associated with
the coordinate system is called a holonomic, or coordinate, basis. In present work we are going to express
Maxwell’s equations in basis associated with the twisted coordinates.

Basis vectors of the new coordinate system are related to the basis vectors of the initial Cartesian coordinate
system as . _ _ .
e =Aiewy, e =Ael) (3)

. . 1 ;!
where transformation matrices A*;; and A ; are

" oxt’ ; oz’
A= —, ANy = —. 4
] ox* ox* (%)

In Eq. (3) and further in the text we use the Einstein summation convention for repeated indices. Explicitly,
these matrices are®

cosaz sinaz  aycosaz — xsinaz) cosaZ sinaZ oY
Ay = | —sinaz cosaz —a(rcosaz+ysinaz) | = [ —sinaZ cosaZ —aX (5)
0 0 1 0 0 1
and
cosaz —sinaz —ay cosaZ —sinaZ —a(YcosaZ + XsinaZ)
A= [sinaz cosaz az | =|sinaZ cosaZ a(XcosaZ —YsinaZ) |. (6)
0 0 1 0 0 1

Let us denote basis vectors of Cartesian reference frame as ey = {X, 9,2} = {j:j/, gjj/, éj/}, where the subscript
in brackets designates the basis vector number. Analogously, let us denote the basis vectors of the twisted

*In the transformation matrices, upper index corresponds to the row number and lower index corresponds to the
column number.



reference frame as e(;) = {X,Y,Z} and e® = {£,7,(} for tangent and cotangent bases, respectively. They read
as

’

e = X =A' 1€(j7y = cos azX + sin a2y, (7a)
€)= Y = Ai/ge(i/) = —sinazX + cos azy, (7b)
e = 7= Ai/3e(i/) = —ayX +ary + 7 (7c)
and
e =& =AYe") = cosaZgk + sinaZy + aYz, (8)
e? == A%el) = —sinaZ% + cosaZy — a Xz, (9)
e® = =A% e =3 (10)

Now, when we know forward and inverse transformation matrices (or Jacobians), we can determine co-
and contravariant metric tensors. Remembering that the metric tensor in Cartesian coordinates is trivial as
gi'k = 6i’k/ we find

1 0 ay 1 0 —aY
gx =N AVgw =10 1 —ax = o 1 aX , (11)
ay —azr 1+a?(z?+9?) —aY aX 1+a*(X?2+Y?)
14+ 0%y —-a’zy —ay 14+0%Y? —a?XY aY
gt = A?L:,Aﬁ,gi/k, =| —a?zy 1+a?2? ar | =| —a®?XY 1+a%X? —aX|. (12)
—ay azx 1 aY —aX 1

Notably, the determinant of the Jacobian and, hence, metric tensor is unity: det [Aﬁ/] =1 and det[g;x] = 1.

3. MAXWELL’S EQUATIONS IN TENSOR FORM

Maxwell’s equations for harmonic fields with an angular frequency w in arbitrary reference system with the use
of tensor notation can be written as follows:!?:13

MV Hy, = iwn’eo EY, (13a)
e i By = —iwpoHY, (13b)
Vin’E' =0, (13c)
V.H' =0, (13d)

where V. is covariant derivative, % is the fully antisymmetric Levi-Civita tensor, vectors with upper and
lower indices are contravariant and covariant vectors, respectively, n = n(x*) is the refractive index, ¢ and g
is the permittivity and permeability of vacuum, respectively.

Redefining the magnetic field as

Hi= |2 (14)
Ho

and by substituting (14) to (13) the Maxwell equations are recast to
Eijkv]'_[:]k = ik0n2Ei, ( )

RV By, = —ikoH', (15b)

VmQEi = 0, ( )

viﬁi = 07 ( )



where ko = % is the free space wavenumber. Further we drop the tilde keeping in mind that the magnetic field

is rescaled.

Using the metric tensor g;; for raising and lowering indices as
U = gikvk7 Ui = gikvka (16)

we will rewrite the equations with respect to contravariant electric E? and covariant magnetic field H;:

eIV Hy, = ikon?E, (17a)
R gV, E' = —ikog'* Hy,, (17b)
Vin?E" =0, (17c)
g*ViHy, = 0. (17d)

Here we account for that the covariant derivative satisfies V;g;5 = 0.

The covariant derivative of contra- and covariant vectors is respectively'?
Vvt = 90t + Fika, Viu; = Opu; — I us, (18)
where I'?, is the metric connection, or Christoffel symbols, expressed as f
= %gis(akgls + AGsk — Osgki)- (19)
It is important that although we are going to use curvilinear coordinates the manifold we are working in is still

flat Euclidean space with zero torsion and curvature. The flatness of Euclidean space leads to symmetries in
Christoffel symbols which, in their turn, allow to replace covariant derivatives in Maxwell’s equations by partial

derivatives: 12
%9, Hy, = ikonE", (20a)
e g0, E' = —ikog™ Hy, (20Db)
Om*E' =0, (20c)
g*o;Hy, = 0. (20d)

To obtain the wave equation with respect to E* we multiply Eq. (17b) by £P"*g;,V,. and replace P>V, H,
by ikon?EP using Eq. (17a) -
eProeiik g, g1V, V;E' — k3n®EP = 0. (21)

Performing contractions and taking into account symmetries of covariant derivative of the flat Euclidean space
we finally get A ‘ _
gV VB — gV (VIEY + kin?E' = 0. (22)

3.1 Reciprocity theorem

To later prove orthogonality of modes we refer to the Lorentz reciprocity theorem. Let us express it in tensor
notations. Here we follow the derivation by Snyder and Love.'*

Consider a vector ] B B _
F* :Emk(EjH;—‘rE;Hk)) (23)

In nonholonomic bases, expression for connection also includes object of nonholonomity.!! We everywhere assume
that the basis is holonomic i.e. defined by the coordinate system.



where * denotes complex conjugate. The unbarred fields satisfy Maxwell’s equations (17), and the barred fields
satisfy the conjugated forms of these equations with the corresponding refractive index function n*. Let us
calculate the divergence of the vector F* and use Maxwell’s curl equations (17)

ViF' = eV, (E;H; + E; Hy,)
= —ikeH T}, + iko(R*)? E7* B + k> Hy, — ikon® BV E;
=iko ((1*)* —n®) EYE;. (24)

The two-dimensional form of the divergence theorem for F? is

/ V. F'dA = 9 / Fi3'dA + ]{ Finldl, (25)
82’ SA
A A

where A is an arbitrary cross-sectional area in zy-plane, * is the unit vector parallel to the z-axis, the contour
JA is the boundary of A, and 7’ is the unit outward normal on 6 A in the plane of A. If A is chosen to be infinite,
the integral over the boundary §A vanishes for the bound mode fields as they exponentially decay outside the
waveguide core and can be dropped in (25). Thus, we obtain the reciprocity theorem in its conjugated form

ioa_ 0O is a4 0O Qs
/VZ—F dA = 9. / F'zZ,dA = B /ledA. (26)
A Ao

oo

We can freely switch from % to % and vice-versa, since the integral in (26) does not depend neither on z,y
nor on X,Y.

4. EIGENMODES OF A TWISTED WAVEGUIDE
4.1 Definition of an Eigenmode

Let us consider a twisted waveguide of an arbitrary cross-section n(X,Y") with constant twist rate o and infinite
length. Such a system is invariant in Z in twisted coordinates. Therefore it is intuitive to define an eigenmode
for this system in a way analogous to the straight waveguide case, but using twisted coordinates.

Within the twisted reference frame there are four possible ways to define an eigenmode depending on combi-
nation of contra- and covariant electric and magnetic vectors we choose i.e., contravariant magnetic and electric
vectors, covariant magnetic and electric vectors, contravariant electric and covariant magnetic vectors, covariant
electric and contravariant magnetic vectors. Any choice allows to separate Z variable and formulate a two-
dimensional eigenvalue problem. We note also that remaining components can be always obtained by contracting
with the metric tensor g, or g**.

Here we define the eigenmode with contravariant electric and covariant magnetic vectors as follows
FEY(X,Y,Z) =¢e(X,Y)e P2 (27a)
Hi(X,Y,Z) = hi(X,Y)e P2 (27h)

4.2 Eigenmode Equation

With this definition Maxwell’s curl equations in twisted coordinates take the form

Oy he +iBh, = ikon’ex, (28a)

—Oxh¢ —iBhe = ikon’ey, (28b)

—Oxhy — Oyhe = ikon?ey, (28¢)

dyez +ifey + a(—ex + (X0y — YOx)ey +iBXez) + a®X (X0y — YOx) ez = —ikohe, (28d)
Oxez —ifex +a(—ey — (Xdy —YOx)ex +iBYez) + *Y (X0y —YOx) ey = —ikoh, (28e)

Oxey —Oyex + « (262 — iﬂ(XGX + Yey))
+a? (—X26Yex + Y2(9Xey + XY(&XeX — ayey) — Xex + Yey) = —ikohg, (28f)



while divergence equations read as
dxex + Oyey —ifes + Ox Inn’ex + dy Inney =0, (29a)
(9)(/1& + 8yh77 — iﬂhg
+ « (X(—ayhc + iﬂhn) + Y(@th - lﬂhg))
o® (X?0y — XYOx —Y)h, + (Y?0x — XY 0y — X)he) = 0. (29h)

Equation (29a) readily allows to express ez component in terms of ex and ey. This motivates our choice
of contravariant electric field since we are going to formulate eigenmode equation in terms of electric field.
Expressing wave equation (22) in twisted coordinates and substituting ez from (29a) we obtain a differential
equation

L(B,a)le) =0 (30)

with respect to the two-component column-vector |e)

o= (&) @1

and the differential operator £(3, a) of the form
L(B,a) =A— %+ 2ia( B+ BC) + o*D, (32)

where A, B,C, D are operators depending only on X,Y, 0y, dy, and n(X,Y)*

A= 0% + 0% + k3n? + 0% (Inn?) + dx Inn?0x Oy Inn?0x + 0x 0y (Inn?) (33a)
- 8X Inn%dy + dx 0y (Inn?) 0% + 0% + k3n? + 02 (Inn?) + dy Inn2dy
. Xay + 0x lnTLQay 832/ + Oy lnn28y
b= < —Oxlnndx  —Oxdy — Oy nn?dx (83b)
X@y—Y@X—Y(')Xlnn 1+Y8ylnn (33 )
1+ XoxIlnn X0y —YOx + X0y Inn ¢
b (~1—X0x ~ Yoy + (Xdy — Yx)? 2(Xdy — Yx) (33d)
o —Q(Xay —Yax) -1 - X0x —Yay—l-(Xay —Y@X)2

Equation (30) is nonlinear with respect to the eigenvalue 8. Eigenvalue problem associated with this operator
is a nonlinear eigenvalue problem (NLEVP). NLEVPs are encountered in a variety of physical and engineering
applications such as vibrational acoustics, fluid dynamics, photonic crystals with dispersive permittivity. An
extensive collection of NLEVPs can be found in.'® There is a plenty of numerical approaches existing and being
developed for solving NLEVPs. The review of those can be found, e.g., in the survey by Giittel and Tisseur.'®

4.3 Approaches of Solving the NLEVP
If the twist is slow, i.e, a < ko, the terms in operator £ (32) related to twist can be considered as a small
perturbation to the unperturbed (i.e, untwisted) operator Lo = £(3,0). Then, eigenvalues and eigenvectors can
be obtained in terms of perturbation series in « using the perturbation theory, namely,
B = B(O) + Ozﬂ(l) + QQB(Q) +..., (34&)
le) = e +ale®) +a?|e@) + ..., (34b)

Hn expression for D we dropped terms proportional to Inn for brevity. Nevertheless, in the calculations we have taken
them into account.



where 5™ and |e(")> are n-th order corrections to the eigenvalues and eigenvectors, respectively. For n = 0
we have unperturbed, i.e., untwisted eigenvalues and eigenvectors. It was shown by Lewin,? that due to the fact
that change in propagation constant must be insensitive to the sign of the twist, expansion (34a) only contains
terms of even order. This means that in the first order perturbation theory eigenvalues and eigenvectors are
equal to those of untwisted waveguide. More specifically, ex, ey components of the twisted mode in this case are
equal to e, e, components of the untwisted mode. Normally, the modes of the straight rectangular waveguide
are quasi-TE and TM modes, i.e., linearly polarized modes. Taking into account the relation between basis
vectors of the twisted and Cartesian systems, we can see that to the lowest order perturbation, the modal fields
of twisted rectangular waveguide have the helical shape with the twist rate as the twisted waveguide, i.e., a. In
other words, in the adiabatic regime, polarization of the mode is twisted synchronously with the waveguide core.
This justifies utilization of twisted waveguides as adiabatic polarization rotators.

The perturbation theory for NLEVPs with generally non-Hermitian operators was developed by Mensah et
al.'™ The authors provide a link to a repository with the implementation of their perturbation approach along
with other methods for solving NLEVPs in python programming language.

To obtain numerically exact solutions to the NLEVP (30) one can apply nonlinear optimization method such
as Newton method. Newton method requires careful choice of the initial guess. Solutions obtained within the
perturbation theory can serve as a good initial guess.

5. EGENMODE EXPANSION METHOD FOR TWISTED WAVEGUIDES

To analyze light propagation in twisted waveguide we adopted the Eigenmode Expansion (EME) Method and
generalized it to twisted waveguides. EME is a semi-analytical method based on the fact, that any solution to
Maxwell’s equations in a waveguide can be expressed as a superposition of the waveguide modes. The particular
solutions are obtained by finding modal amplitudes resulting from certain excitation at the waveguide end facets.
The process of finding the amplitudes uses continuity properties of the transverse fields at the waveguide end
facets'® and orthogonality of the waveguide modes.

In order to generalize the EME method to twisted waveguides, one need firstly to establish orthogonality
properties of their eigenmodes, which we do in two following sections.

5.1 Fields of Backward-Propagating Modes

In order to establish orthogonality properties of eigenmodes we firstly find the relations between the fields of
forward and backward propagating modes. To obtain backward-propagating modes one need to simultaneously
flip the z-axis and sense of twist. In the equations (28) this results in change of 8 to —f and « to —«. It is
straightforward to show that the fields

éi = {€XaeY7 _ez}a Bi = {_h’57 _h"th} (35)

are the solutions for the transformed equations, where €' = {ex,ey,ez} and h; = {h¢, hy, h¢}, are the corre-
sponding forward-propagating modal fields. Analogous relations hold for covariant electric and contravariant
magnetic fields

€; = {65,67],764}, h' = {7hx,fhy,hz}. (36)

5.2 Orthogonality of Eigenmodes

Let us now establish orthogonality relations for the modes of twisted waveguides. To this end, we substitute two
eigenmodes into the reciprocity theorem (26) so B¢ = Ef” E' = E! with latin indices designating components
and greek indices designating mode numbers. For the modes of nonabsorbing waveguides left side of Eq. (26)
vanishes due to Eq. (24), since the refractive index is real, so n* =n

iko / ((n*)* —n?) E}E; ,dA = 0. (37)

AOO



Substituting to the right hand side modal ansatz (27) we get

(B = 80) [ el + b 5udA =0, (33)
Aso
Since L, )
5= ASY =AY =, (39)
integrand of equation (38) expands as
6312(617Mh;1y + eithu) + 5321(627#h>1k,u + e;,uhQ,#) = ei,uh:},u + ez,uhm# - eﬁ’#hz,u - e;,uhf»#7 (40)

therefore, only terms with e¢ ,, he, take part in (38). Keeping this and relations (35) and (36) in mind, we
change p to —u in Eq. (38) to obtain

(B4 8,) [ ¥ ecauhis = €5 hu)iidA =0, (a1
Ao

Summing and subtracting Eqs. (38) and (41) we obtain the orthogonality condition for the modes of a twisted
waveguide

/ Eijkej#hzyyzidA = / sijke;,jhk#éidfl =0; p#v. (42)
Aco Ao

5.3 Modal Amplitudes

Once we found the eigenmodes of a twisted waveguide and proved that they form an orthogonal set, we are
able to find particular expansion coefficients, i.e., the modal amplitudes. Practical case of light coupling to
the twisted waveguide via a butt-coupled straight waveguide is of our interest. Let us assume for definiteness
that the straight waveguide is placed in the left half-space z < 0 while the twisted one is placed in the right
half-space z > 0. In order to find the expansion coefficients we expand field in z < 0 and z > 0 regions in
terms of the modes of the straight and twisted waveguides, respectively. This procedure involves calculation of
overlap integrals between the modes of the straight and twisted waveguide according to the procedure described
in.'® This procedure extrapolates to the twisted waveguides without changes due to the previously established
properties of the modes of twisted waveguides.

6. RESULTS
6.1 Finite-Difference Mode Solver for Twisted Waveguides

For solving NLEVP of equation (30) we adapted the code from the aforementioned repository by Mensah et al..
We have published our fork of the repository online¥ We implemented a finite-difference scheme in python to
represent operators A, B,C,D of Eq. (33) in terms of sparse matrices. Our finite-difference scheme is inspired
by the Yee-grid-based scheme proposed by Zhu and Brown.!? For verification of our results we performed BPM
simulations in VPIphotonics Device Designer simulation package.?°

6.2 Modal Indices and Fields

As a test example we take the waveguide similar to the one studied by Hou et al.? The core material is SU-8
with refractive index n¢, = 1.5552 at the telecom wavelength A = 1.55 ym. The surrounding medium is air with
ne = 1. The dimensions of the core are 4 x 2 um?. The twist angle is constant 90° while twist length is variable.

In Figure 1 effective indices as a function of twist length of the six lowest-order guided modes are depicted.

Shttps://bitbucket.org/jokesfor300/pyholtz/src/master/
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Figure 1. Effective indices neg = % of the lowest-order modes of the twisted waveguide as a function of twist length. The
waveguide parameters are defined in the text.

We can see that the twist leads to divergence of the eigenvalues of the quasi-TE and -TM modes of the like
order. In the case of very strong twist, eigenvalues of the modes of different order can even cross. This is quite
a curious effect since at the crossing point the modes degenerate. Thorough analysis of this effect is the matter
of our further research.

Figure 2 shows the electric field of the fundamental quasi-TE mode for different twist rates. In the absence of
twist (see Figure 2(a)) almost all mode power is stored in X polarization. When the twist rate is rather small (see
Figure 2(b)), the field patterns still closely resemble the unperturbed ones. In this regime, as we will see later,
the waveguide works as an adiabatic polarization converter. In the regime of rapid twist (see Figure 2(c)) ey
component becomes comparable with e x component. This indicates the breakdown of adiabaticity of polarization
rotation. Namely, the polarization rotation ceases being synchronous with the waveguide core twist.
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Figure 2. Modal electric field of the fundamental quasi-TE mode for (a) untwisted, (b) and (c) twisted waveguide with
twist length L = 1000 pm and L = 60 pum

6.3 Polarization Conversion

We have tested the ability of the developed twisted EME (tEME) method to correctly predict polarization
conversion by twisted waveguide. We have launched the fundamental quasi-TE mode of the straight (untwisted)
waveguide into twisted waveguide. The results are shown in Figures 3 and 4. Figure 3 demonstrates the slice of

the simulated fields within the plane y = 0 in the straight waveguide region and within the curved surface Y =0
in the twisted waveguide region.
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Figure 3. Simulated propagation in twisted waveguide with the twist length (a) 1000 pym, (b) 60 pm. Waveguide parameters
are defined in the text.

It is seen, that in accordance with our considerations, when the twist is rather slow (twist length L = 1000 pm,
Figure 3(a)), the adiabatic regime is observed: almost all power remains in E¢ component, which means that the
polarization twists synchronously with the waveguide core. On the other hand, when the twist is non-adiabatic
(twist length L = 60 pm, Figure 3(b)), significant part of the power migrates to E, component, which means
that the polarization is no more aligned with the waveguide core and, consequently, polarization conversion is
far from perfect.

In the Figure 3(a) one can observe small oscillations in FE, component. They arise from interference of
multiple excited twisted waveguide modes. We claim, that this interference is responsible for non-monotonic
behavior of polarization conversion efficiency with respect to twist length, observed in? and Figure 5.

Figure 4 additionally shows the transverse electric field at the output facet.

E, (b)

Y [um]
Y [um]

-25 0.0 25 -25 00 25 -25 00 25 -25 00 25
X [um] X [um] X [um] X [um]

Figure 4. Transverse electric field at the output facet of twisted waveguide with the twist length (a) 1000 pm, (b) 60 pm.
Waveguide parameters are defined in the text.

To quantitatively analyze polarization conversion efficiency (PCE) we use a similar definition to the one used
by Hou et al.
[._, |E,|?dA
[oy |BL2IA

where £, and E, are taken at the output facet of the twisted waveguide. We compared the results obtained within
our modal approach with BPM simulations and found excellent agreement. The results of PCE calculation are
shown in Figure 5. One can see that starting from twist length of approximately 250 um PCE oscillates around
90-100 %. This corresponds to adiabatic polarization conversion. The oscillations occur due to interference of
different excited twisted waveguide modes.

(43)



Our results agree well with the results for the similar waveguide studied by Hou et al.? These results prove
viability of the developed approach.
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Figure 5. Polarization conversion efficiency of the studied twisted waveguide as a function of twist length. Waveguide
parameters are defined in the text.

7. SUMMARY

To conclude, we have rigorously defined an eigenmode of a twisted waveguide as a natural generalization of the
eigenmode of a straight waveguide. Using covariant approach, we have obtained the eigenmode equation which
is nonlinear with respect to eigenvalue, or propagation constant. For solving the eigenmode equation we have
combined the NLEVP solver with a Yee-grid-based finite-difference full-vectorial scheme, which we developed
specifically. By analyzing the obtained propagation constants and modal fields we have explained the modal
mechanism of polarization rotation. We want to stress, that although optics applications are of our primary
concern in this work, our results are general and apply to twisted waveguides of arbitrary nature. We believe
that our results can facilitate further investigations of more advanced on-chip devices that use twisted waveguide
as a basis element, e.g., couplers and Mobius rings. Such devices can possess unique polarimetric features and
may find applications in polarization-encoded telecommunications as well as quantum information technologies.

REFERENCES

[1] Schumann, M., Biickmann, T., Gruhler, N., Wegener, M., and Pernice, W., “Hybrid 2D-3D optical devices
for integrated optics by direct laser writing,” Light: Science & Applications 3, e175—175 (June 2014).

[2] Hou, Z.-S., Xiong, X., Cao, J.-J., Chen, Q.-D., Tian, Z.-N., Ren, X.-F., and Sun, H.-B., “On-Chip Polar-
ization Rotators,” Advanced Optical Materials 7, 1900129 (May 2019).

[3] Lewin, L., “Propagation in curved and twisted waveguides of rectangular cross-section,” Proceedings of the
IEFE - Part B: Radio and Electronic Engineering 102, 75-80 (Jan. 1955).

[4] Lewin, L. and Ruehle, T., “Propagation in Twisted Square Waveguide,” IEEE Transactions on Microwave
Theory and Techniques 28, 44-48 (Jan. 1980).

[5] Yabe, H. and Mushiake, Y., “An Analysis of a Hybrid-Mode in a Twisted Rectangular Waveguide,” IEEE
Transactions on Microwave Theory and Techniques 32, 65-71 (Jan. 1984).



[18]

[19]

[20]

Yabe, H., Nishio, K., and Mushiake, Y., “Dispersion Characteristics of Twisted Rectangular Waveguides,”
IEEE Transactions on Microwave Theory and Techniques 32, 91-96 (Jan. 1984).

Ma, X., Liu, C.-H., Chang, G., and Galvanauskas, A., “Angular-momentum coupled optical waves in chirally-
coupled-core fibers,” Optics Express 19, 26515 (Dec. 2011).

Waldron, R. A., “A HELICAL COORDINATE SYSTEM AND ITS APPLICATIONS IN ELECTROMAG-
NETIC THEORY,” The Quarterly Journal of Mechanics and Applied Mathematics 11(4), 438-461 (1958).
Nicolet, A. and Zolla, F., “Finite element analysis of helicoidal waveguides,” IET Sci. Meas. Technol. 1(1),
5 (2007).

Shyroki, D. M., “Exact Equivalent Straight Waveguide Model for Bent and Twisted Waveguides,” IEFE
Transactions on Microwave Theory and Techniques 56(2), 414-419 (2008).

Schouten, J. A., [Tensor Analysis for Physicists], Dover Publications, New York, 2nd ed ed. (1989).
McConnell, A. J., [Applications of Tensor Analysis], no. S373 in Dover Books Dover Books on Advanced
Mathematics, Dover Publ, New York, NY (1957).

Leonhardt, U. and Philbin, T. G., “Chapter 2 Transformation Optics and the Geometry of Light,” in
[Progress in Optics], 53, 69-152, Elsevier (2009).

Snyder, A. W. and Love, J. D., [Optical Waveguide Theory], Springer US, Boston, MA (1984).

Betcke, T., Higham, N. J., Mehrmann, V., Schréder, C., and Tisseur, F., “NLEVP: A Collection of Nonlinear
Eigenvalue Problems,” ACM Transactions on Mathematical Software 39, 1-28 (Feb. 2013).

Giittel, S. and Tisseur, F., “The nonlinear eigenvalue problem,” Acta Numerica 26, 1-94 (May 2017).
Mensah, G. A.; Orchini, A., and Moeck, J. P., “Perturbation theory of nonlinear, non-self-adjoint eigenvalue
problems: Simple eigenvalues,” Journal of Sound and Vibration 473, 115200 (May 2020).

Gallagher, D. F. G. and Felici, T. P., “Eigenmode expansion methods for simulation of optical propagation
in photonics: Pros and cons,” in [Integrated Optoelectronics Devices], Sidorin, Y. S. and Tervonen, A., eds.,
69 (June 2003).

Zhu, Z. and Brown, T., “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics
Express 10, 853 (Aug. 2002).

“Device Designer.” VPIphotonics (2021).



	Introduction
	Twisted Coordinates
	Maxwell's Equations in Tensor Form
	Reciprocity theorem

	Eigenmodes of a Twisted Waveguide
	Definition of an Eigenmode
	Eigenmode Equation
	Approaches of Solving the NLEVP

	Eigenmode Expansion Method for Twisted Waveguides
	Fields of Backward-Propagating Modes
	Orthogonality of Eigenmodes
	Modal Amplitudes

	Results
	Finite-Difference Mode Solver for Twisted Waveguides
	Modal Indices and Fields
	Polarization Conversion

	Summary

