Random all-dielectric anti-reflective metasurfaces on the waveguide facet

<u>Yuriy Artemyev</u>^{1,2}, Yakov Galutin¹, Ioseph Gurwich¹, Alexander Shalin², Alina Karabchevsky¹

¹ Electrooptical Engineering Unit and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University, Israel ² ITMO University, Russia

ITMO UNIVERSITY

Electric and magnetic fields can be described by scalar and vector potentials:

$$\Phi(\boldsymbol{R},t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \int_V \frac{\rho\left(\boldsymbol{r},t-\frac{|\boldsymbol{R}-\boldsymbol{r}|}{v}\right)}{|\boldsymbol{R}-\boldsymbol{r}|} dV, \quad \boldsymbol{A}(\boldsymbol{R},t) = \frac{\mu\mu_0}{4\pi} \int_V \frac{\boldsymbol{J}\left(\boldsymbol{r},t-\frac{|\boldsymbol{R}-\boldsymbol{r}|}{v}\right)}{|\boldsymbol{R}-\boldsymbol{r}|} dV$$

Expansion of vector potential into Taylor series:

$$\boldsymbol{A}(\boldsymbol{R},t) = \frac{\mu\mu_0}{4\pi R} \left[\int_V \boldsymbol{J} \, dV + \frac{R_i}{vR} \int_V \dot{\boldsymbol{J}} r_i \, dV + \frac{R_j R_k}{2v^2 R^2} \int_V \ddot{\boldsymbol{J}} r_j r_k \, dV + \frac{R_j R_k R_m}{6v^3 R^3} \int_V \dddot{\boldsymbol{J}} r_j r_k r_m \, dV + \dots \right]$$

Consider second term: $R_{j} \int_{V} \nabla \left(\boldsymbol{J} r_{i} r_{j} \right) dV = R_{j} \int_{V} \left(\dot{\rho} r_{i} r_{j} + J_{i} R_{j} r_{j} + r_{i} R_{j} J_{j} \right) dV =$ $= -\dot{Q}_{ij} R_{j} + 2 \int_{V} J_{i} \left(R_{j} r_{j} \right) dV + \int_{V} \underbrace{\left[r_{i} (R_{j} J_{j}) - J_{i} (R_{j} r_{j}) \right]}_{\boldsymbol{b}(\boldsymbol{ac}) - \boldsymbol{c}(\boldsymbol{ab}) = \left[\boldsymbol{a} \times \left[\boldsymbol{b} \times \boldsymbol{c} \right] \right]} dV =$ $= -\dot{Q}_{ij} R_{j} + 2 \int_{V} J_{i} \left(R_{j} r_{j} \right) dV + \boldsymbol{R} \times \int_{V} \left[\boldsymbol{r} \times \boldsymbol{J} \right] dV$

Finally:
$$R_j \int_V J_i r_j dV = \frac{1}{2} \dot{Q}_{ij} R_j + [\boldsymbol{m} \times \boldsymbol{R}] + \frac{1}{2} U'_{ij} R_j$$

Multipole moments

Electric multipole moments:

$$d_{i} = \int_{V} \rho(\boldsymbol{r}) r_{i} \, dV = \frac{1}{i\omega} \left(U_{i} + \int_{V} J_{i} \, dV \right)$$
$$Q_{ij} = \int_{V} \rho(\boldsymbol{r}) r_{i} r_{j} \, dV = \frac{1}{i\omega} \left(U_{ij}' + \int_{V} \left(J_{i} r_{j} + J_{j} r_{i} \right) dV \right)$$
$$O_{ijk} = \int_{V} \rho(\boldsymbol{r}) r_{i} r_{j} r_{k} \, dV = \frac{1}{i\omega} \left(U_{ijk}'' + \int_{V} \left(J_{i} r_{j} r_{k} + r_{i} J_{j} r_{k} + r_{i} r_{j} J_{k} \right) dV \right)$$

Magnetic multipole moments:

$$oldsymbol{m} = rac{1}{2} \int_{V} \left[oldsymbol{r} imes oldsymbol{J}
ight] dV$$
 $M_{qm} = rac{2}{3} \int_{V} \left[oldsymbol{r} imes oldsymbol{J}
ight]_{q} r_{m} \, dV$

Surface integrals:

$$U_{i} = \oint_{S} (\boldsymbol{n}_{S} \cdot \boldsymbol{J}) r_{i} dS$$
$$U_{ij}' = \oint_{S} (\boldsymbol{n}_{S} \cdot \boldsymbol{J}) r_{i}r_{j}dS$$
$$U_{ijk}'' = \oint_{S} (\boldsymbol{n}_{S} \cdot \boldsymbol{J}) r_{i}r_{j}r_{k} dS$$

Multipole decomposition of electric and magnetic fields

Multipole decomposition of vector potential:

$$\boldsymbol{A}(\boldsymbol{R},t) = \frac{\mu\mu_0}{4\pi R} \left[\dot{\boldsymbol{d}} + \boldsymbol{U} + \frac{1}{2v} \ddot{\boldsymbol{Q}}\boldsymbol{n} + \frac{1}{v} \left[\dot{\boldsymbol{m}} \times \boldsymbol{n} \right] + \frac{1}{2v} \dot{\boldsymbol{U}}'\boldsymbol{n} + \frac{1}{6v^2} \ddot{\boldsymbol{O}}\boldsymbol{n}\boldsymbol{n} + \frac{1}{2v^2} \left[\boldsymbol{n} \times \ddot{\boldsymbol{M}}\boldsymbol{n} \right] + \frac{1}{6v^2} \ddot{\boldsymbol{U}}''\boldsymbol{n}\boldsymbol{n} + \dots \right]$$

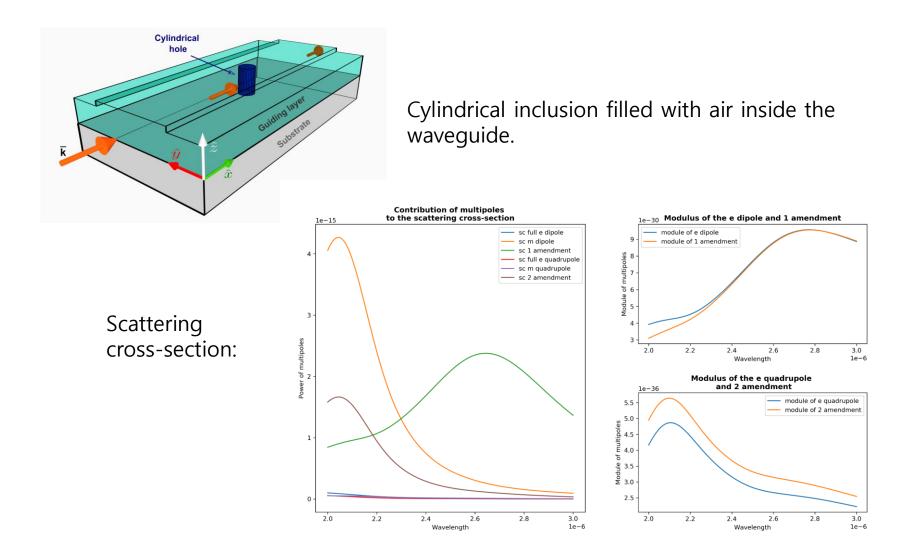
Multipole decomposition of electric and magnetic fields:

$$oldsymbol{E} = -rac{\partial oldsymbol{A}}{\partial t} - \operatorname{grad} arphi, \quad oldsymbol{H} = \operatorname{rot} oldsymbol{A}$$

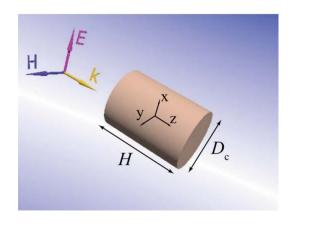
$$\begin{split} \boldsymbol{E} &= \frac{k^2}{4\pi\varepsilon\varepsilon_0} \frac{e^{ikR}}{R} \left([\boldsymbol{n} \times [\boldsymbol{d} \times \boldsymbol{n}]] + \frac{i}{kv} [\boldsymbol{n} \times [\boldsymbol{U} \times \boldsymbol{n}]] + \frac{ik}{2} [\boldsymbol{n} \times [Q\boldsymbol{n} \times \boldsymbol{n}]] + \frac{1}{v} [\boldsymbol{m} \times \boldsymbol{n}] + \frac{1}{2v} [\boldsymbol{n} \times [U'\boldsymbol{n} \times \boldsymbol{n}]] + \frac{k^2}{6} [\boldsymbol{n} \times [\boldsymbol{n} \times O\boldsymbol{n}\boldsymbol{n}]] + \frac{ik}{2v} [\boldsymbol{n} \times M\boldsymbol{n}] + \frac{ik}{6v} [\boldsymbol{n} \times [\boldsymbol{n} \times U''\boldsymbol{n}\boldsymbol{n}] \right) \end{split}$$

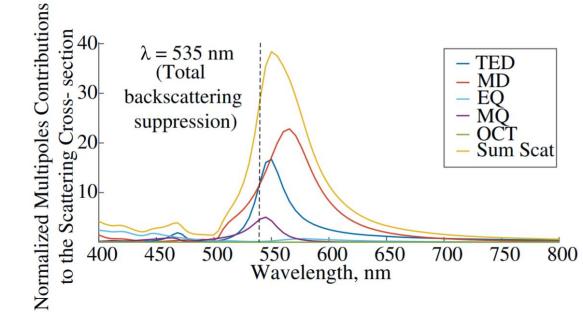
$$\begin{split} \boldsymbol{H} &= \frac{\mu\mu_0}{4\pi R \, v} \frac{e^{ikR}}{R} \left(\begin{bmatrix} \ddot{\boldsymbol{d}} \times \boldsymbol{n} \end{bmatrix} + \begin{bmatrix} \dot{\boldsymbol{U}} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{2v} \begin{bmatrix} \ddot{\boldsymbol{Q}} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{v} \left[\boldsymbol{n} \times [\boldsymbol{n} \times \ddot{\boldsymbol{m}}] \right] + \\ &+ \frac{1}{2v} \begin{bmatrix} \ddot{\boldsymbol{U}'} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{6v^2} \begin{bmatrix} \ddot{\boldsymbol{O}} \boldsymbol{n} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{2v^2} \begin{bmatrix} \boldsymbol{n} \times \begin{bmatrix} \ddot{\boldsymbol{M}} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} \end{bmatrix} + \frac{1}{6v^2} \begin{bmatrix} \ddot{\boldsymbol{U}''} \boldsymbol{n} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} \end{split}$$

Multipole decomposition of the inclusion in the waveguide



Kerker Effect

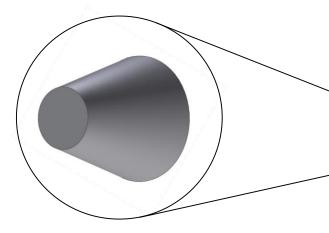




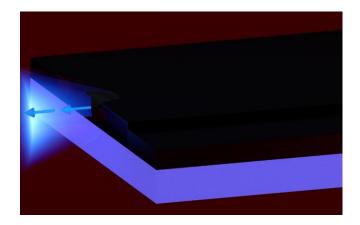
Kerker effect – is the suppression of the back scattering in case when electric and magnetic dipole moments are of the equal magnitude and opposite phase.

From Opt. Lett, 42:4 835-838 (2017)

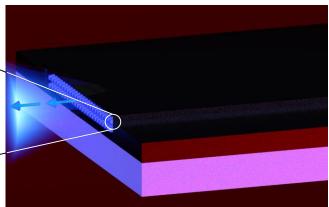
Various structures on the waveguide facets



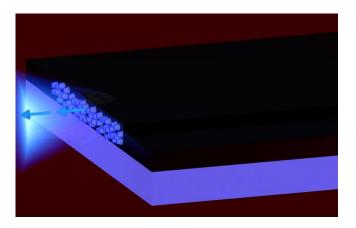
Silicon Frustum



Flat facet

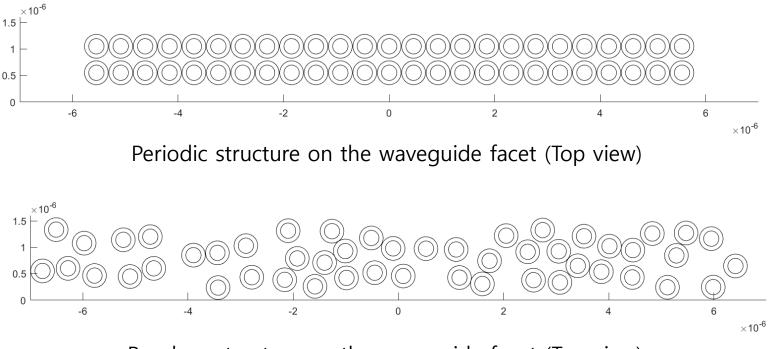


Periodic structure on facet



Random structure on facet

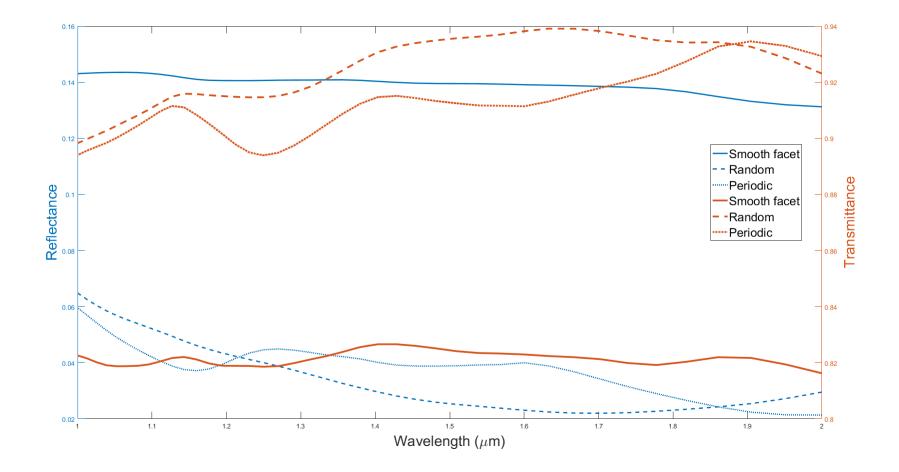
Periodic and random structures on waveguide facet



Random structure on the waveguide facet (Top view)

Frustum, three-quarter view:

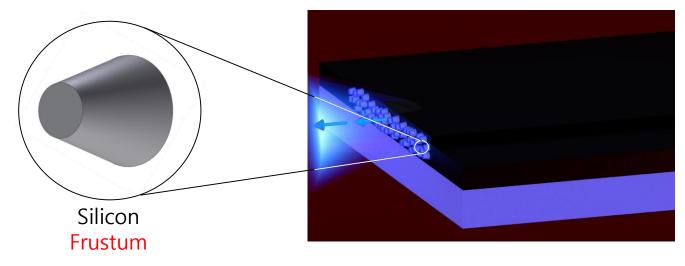
Transmittance and reflectance



At $\lambda = 1,66 \ \mu m$ transmittance is up to 94%!

Conclusion

- Amendments were proposed to the classical multipole decomposition to allow for analysis of open systems in which charges and currents are not localised.
- In case of an **inclusion filled with** air on an optical waveguide, electric multipole moments are replaced by the surface integrals.
- Random metasurfaces engraved on Si waveguide facet appear to allow for superior anti-reflective properties (as high as 94% transmittance) compared to the periodic metasurface, (90% transmittance) compared to the smooth facet (82% transmittance).



Thank you for your attention!

Our Light-on-a-Chip team at Ben-Gurion University, Israel