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INTRODUCTION

▪ The SPR is a quantum electromagnetic (EM) phenomenon arising from the 

interaction of light with free electrons at a metal-dielectric interface emerging as a 

longitudinal EM wave in a two-dimensional gas of charged particles such as free 

electrons in metals. 

▪ Under certain conditions the energy carried by the photons is transferred to 

collective excitations of free electrons, called surface plasmons (SPs), at that 

interface. 

▪ This transfer of energy occurs only at a specific resonance wavelength of light 

when the momentum of the photon matches that of the plasmon.
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INTRODUCTION

▪ Electron gas in solid, in our case free electrons in metal, can undergo collective 

motions that call plasma oscillations. It was first presented by Pines and Bohm in 

1952. Plasmon is the oscillation of free electrons in plasma or metal. 

▪ Surface plasmon polariton (SPP) are the propagating electromagnetic wave at the 

interface between a dielectric and a metal.

Figure 1: Surface plasmon polariton (SPP) excitation at the interface between thin 

metal film and analyte and illustration the surface charge density wave.
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THE CONDITIONS FOR SP

The conditions for the surface plasmon excitation are:

1. Incident light is TM polarized.

2. The real part of the dielectric constant of the metal and the dielectric are of 

opposite sign and satisfy:  ℜ 𝜀𝑚 < −𝜀𝑎.

3. Wave vector of the incident light is large enough to satisfy the momentum 

matching  𝑘𝑥 = 𝑘𝑆𝑃.
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TM POLARIZED LIGHT

▪ Propagating SP waves are excited with 

TM-polarized EM waves when the 

component of the k-vector along the 

metal-dielectric interface matches the SP 

k-vector. 

▪ The condition of TM polarization is 

needed to generate the charge 

distribution on the metal-dielectric 

interface.
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THE MOMENTUM MATCHING

Assuming TM-polarized electro-magnetic wave and applying the continuity relations 

of the tangential field’s components (𝐸𝑥, 𝐻𝑦):

𝐸𝑖 𝑟, 𝑡 = 𝐸𝑥𝑖 , 0, 𝐸𝑧𝑖 𝑒𝑗 𝑘𝑥,𝑖𝑥−𝜔𝑡 𝑒−𝑗𝑘𝑧,𝑖𝑧

𝐻𝑖 𝑟, 𝑡 = 0, 𝐻𝑦𝑖 , 0 𝑒𝑗 𝑘𝑥,𝑖𝑥−𝜔𝑡 𝑒−𝑗𝑘𝑧,𝑖𝑧

where 𝑖 = 𝑎, 𝑚 is the analyte and metal, respectively (as shown in Fig. 1), and 𝑘𝑧 is the 

𝑧 component of the wave vector (k-vector). Since the conversion of the wavevector, 

we obtain:

𝑘𝑧,𝑖
2 + 𝑘𝑥

2 = 𝜀𝑖𝑘2

where 𝑘 = 2𝜋/𝜆 and 𝜆 is the vacuum wavelength.
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THE MOMENTUM MATCHING

The relationship between the dielectric constants and the normal components of the 

wavevectors in the two media is given by
𝑘𝑧,𝑚

𝜀𝑚
+

𝑘𝑧,𝑎

𝜀𝑎
= 0

where 𝜀 = 𝜀′ + 𝑗𝜀′′ is the relative permittivity. Using Eq. (3) and Eq. (4), the dispersion 

relation between the wavevector along the propagation direction 𝑘𝑥 and the angular 

frequency 𝜔 is defined as:

𝑘𝑥
2 =

𝜀𝑚𝜀𝑎

𝜀𝑚 + 𝜀𝑎
𝑘2 =

𝜀𝑚𝜀𝑎

𝜀𝑚 + 𝜀𝑎

𝜔

𝑐

2

and the normal component of the wavevector is defined as:

𝑘𝑧,𝑖
2 =

𝜀𝑖
2

𝜀𝑚 + 𝜀𝑎
𝑘2
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THE MOMENTUM MATCHING

The real part of 𝑘𝑥 is related to the wavelength of the SPP. Assuming |𝜀′′𝑚| ≪ |𝜀′𝑚|, 𝑘′𝑥 

is defined as:

𝑘′𝑥 ≈
𝜀′𝑚𝜀𝑎

𝜀′𝑚 + 𝜀𝑎
∙

𝜔

𝑐

and the wavelength of the plasmon is given as:

𝜆SPP =
2𝜋

𝑘′𝑥
≈

𝜀′𝑚 + 𝜀𝑎

𝜀′𝑚𝜀𝑎
∙ 𝜆
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THE MOMENTUM MATCHING

▪ Since for metal the dielectric constant is negative (𝜀𝑚 < 0), then |𝜀𝑚| > 𝜀𝑎. 

▪ From k-vector component in the 𝑥 direction that is propagating in the metal film (𝑘𝑥

= 𝑘𝑖𝑛𝑖 sin 𝜃𝑖) we can calculate the angle for SPR (𝜃SPP = 𝜃𝑖) where 𝑖 is the incident 

angle in the coupling medium.
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DECAY LENGTH

Decay length (𝐿𝑥) is the distance along propagation at which the intensity decays to 

1/𝑒 of the maximum intensity. The damping of the SPP is related to the imaginary 

part of 𝑘′′𝑥. Assuming |𝜀′′𝑚| ≪ |𝜀′𝑚|, 𝑘′′𝑥 is defined as:

𝑘′′𝑥 ≈
𝜀′

𝑚𝜀𝑎

𝜀′
𝑚 + 𝜀𝑎

∙
𝜀′′𝑚𝜀𝑎

2𝜀′
𝑚 𝜀′

𝑚 + 𝜀𝑎
∙

𝜔

𝑐

For the intensity, the decay length is equal to 1/(2𝑘′′
𝑥)

𝐿𝑥 =
𝜆

2𝜋

𝜀′𝑚
2

𝜀′′𝑚

𝜀𝑎 + 𝜀′𝑚

𝜀𝑎
2

3
2
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PENETRATION DEPTH

Penetration depth 𝛿  is the depth from the interface at which the electric field 

decays to 1/𝑒 of the maximum intensity. 𝑘𝑧𝑖 is defined as:

𝑘𝑧,𝑚 =
𝜔

𝑐

𝜀′
𝑚

2

𝜀′
𝑚 + 𝜀′

𝑎
1 + 𝑗

𝜀′′𝑚

𝜀′𝑚

𝑘𝑧,𝑎 =
𝜔

𝑐

𝜀𝑎
2

𝜀′
𝑚 + 𝜀′

𝑎
1 − 𝑗

𝜀′′𝑚

2(𝜀′
𝑚 + 𝜀𝑎)
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PENETRATION DEPTH

Neglecting the very small imaginary parts, the penetration depth to the analyte is 

equal to 1/𝑘𝑧𝑖 and obtained as:

𝛿𝑎 =
𝜆

2𝜋

𝜀𝑎 + 𝜀′𝑚

𝜀𝑎
2

while for the penetration depth to the metal film 𝜀𝑎
2 → 𝜀′𝑚

2
. 

▪ The penetration depth in the near-infrared (NIR) range is larger by a factor of 8 

than that in the visible, although the wavelength ratio is only 2.5. The reason for that 

is the difference in the real part of the metal dielectric function.
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DISPERSION CURVES

▪ Extended surface plasmon on a flat metal/dielectric 

interface cannot be excited directly by light since 

𝑘SP > 𝑘𝑖, prohibiting phase-matching.

▪ The phase-matching between light and SPPs can be 

achieved by adding a coupling medium. For large 

frequencies close to 𝜔𝑝 the damping is negligible 

due to the product 𝜔𝜏 ≫ 1  and then 𝜀(𝜔)  is 

predominantly real.

▪ Here, the coupling medium allows for the phase 

matching. The graph shows the dispersion curves 

for incident light into the metal from vacuum and 

SF11 at incidence angle of 50 degrees.
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CONFIGURATIONS FOR EXTENDED SPR 
EXCITATION
Plasmons can’t be excited directly by electromagnetic radiation due to the needed 

momentum conservation. The phase velocity of the plasmon is smaller than the 

phase velocity of the light in vacuum. Therefore, the momentum of the photons is 

smaller than the momentum of the plasmon.

In order to fulfill the matching condition, the electromagnetic radiation needs to 

couple to excite the plasmon by evanescent field. There are three configurations for 

excitation of SPR:

▪ Grating configuration.

▪ Otto configuration.

▪ Kretschmann-Raether configuration.
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GRATING CONFIGURATION

Another option is to excite plasmon by using a metal grating.

Note: The grating can be dielectric on metal substrate or metallic on dielectric 

substrate.
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GRATING CONFIGURATION

In order to excite plasmon in the grating, the matching between the grating constant, 

the incident light and the plasmonic wave is needed:

2𝜋

𝜆
𝑛𝑎 sin 𝜃 ±

2𝜆

Λ
𝑚 =

2𝜋

𝜆

𝜀𝑚𝜀𝑎,𝑠

𝜀𝑚 + 𝜀𝑎,𝑠

where Λ is the grating constant and 𝑎, 𝑠 corresponds to the medium where the 

plasmonic wave will propagate (analyte or substrate).

17

Figure 3: Illustration of grating 

configuration for SPR excitation.
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GRATING EXPERIMENT

Figure 4: (left) Schematic of the experimental setup of grating configuration for SPR 

excitation and (right) experimental results [1].
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OTTO CONFIGURATION

In Otto configuration there is an air between the prism and the metal layer and the 

plasmon propagates on the surface of the metal film.

Figure 5: Illustration of Otto configuration for SPR excitation.
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KRETSCHMANN-RAETHER CONFIGURATION

In Kretschmann-Raether configuration, the metal layer is deposited on the prism and 

the plasmon propagates on the metal-air boundary.

Figure 6: Illustration of basic Kretschmann-Raether configuration for SPR excitation.
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COMPERING BETWEEN PRISM COUPLING 
METHODS

Figure 7: Excitation of surface plasmons for different thicknesses of a gold film on 

glass (in nanometers) at wavelength of 632.8 nm in (a) Otto configuration and (b) 

Kretschmann-Raether configuration [2].
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SURFACE PLASMON SENSORS

Figure 8: (left) Prism-based optical set-ups and SPR detection modes [3]. (a) Transmission 

spectra of the SPR sensor with different Al2O3 thicknesses, (b) functionalization process, 

and (c) SPR transmission spectra for different concentrations of thrombin (1-80 

nM).(right) [4]. 
Alina Karabchevsky, Integrated Photonics 22



LOCALIZED SURFACE PLASMON (LSP)

When the metal layer is made of subwavelength (𝑑 ≪ 𝜆) structural units (such as 

nanoparticles, containing nanoholes, etc.), the plasmon becomes localized and non-

propagating. It can’t propagate more than the size of the structural unit.

Figure 9: (a) Illustration of the surface charge density of an LSP. (b) Oscillations of 

free electrons at the surface of a nanosphere due to applied electric field with 

arbitrary polarization.
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LOCALIZED SURFACE PLASMON (LSP)

The LSP can be described by the polarizability 𝛼 of the particle

𝛼 =
𝑝

𝐸

where 𝑝 is the electric dipole moment and 𝐸 is the applied electric field.

For example, For spherical particle with radius smaller than the wavelength of the 

incident radiation, we obtain:

𝐶scat =
8𝜋

3
𝑘4𝑟6

𝜀sph − 𝜀𝑠

𝜀sph + 2𝜀𝑠
=

𝑘4

6𝜋
𝛼sph

2
 ⇒  𝐶scat ∝

𝑟6

𝜆4

𝐶abs = 4𝜋𝑘𝑟3ℑ
𝜀sph − 𝜀𝑠

𝜀sph + 2𝜀𝑠
= 𝑘ℑ{𝛼sph}  ⇒  𝐶abs ∝

𝑟3

𝜆
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LOCALIZED SURFACE PLASMON (LSP)

𝛼sph is the polarizability of a spherical particle with radius 𝑟:

𝛼sph = 4𝜋𝜀0𝑟3
𝜀sph − 𝜀𝑠

𝜀sph + 2𝜀𝑠

where 𝜀sph the dielectric function of the sphere, 𝜀𝑠 the dielectric function of the 

surrounding medium and 𝑘  is the wavevector. For metal sphere, the dielectric 

function of the sphere can be approximated by Drude model as:

𝜀sph = 𝜀𝑚 = 1 −
𝜔𝑝

2

𝜔(𝜔 + 𝑗𝛾)

where 𝛾 is the damping of the electrons and 𝜔𝑝 is the plasma frequency.
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LOCALIZED SURFACE PLASMON (LSP)

Ancient 4th century Lycurgus cup shows the effect of plasmons in nanoparticles. 

When illuminated with white light from the behind shows a red color, while when 

illuminated from the front appears green. The effect is due to the interplay between 

scattering and absorption.

Figure 10: (Left) Ancient Roman Lycurgus cup exhibited at the British Museum. 

(Right) Cross-sections of extinction, scattering, and absorption [5].
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APPLICATIONS FOR LSP

Figure 11: Field-enhanced vibrational spectroscopy: (left) surface-enhanced raman 

spectroscopy (SERS) [6] and (right) surface-enhanced infrared spectroscopy (SEIRA) 

[7].
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HYBRID PLASMONIC DEVICES

▪ Hybrid plasmonic devices incorporating dielectric and metallic waveguiding 

structures offer great potential for ultra-compact high-performance devices from 

polarizers and sensors, through surface-enhanced Raman spectrometers, to 

telecommunications filters and all-optical switches. In particular there is growing 

interest in such plasmonic technologies for biochemical analysis in clinical point-

of-care applications.

▪ Surface plasmon-polaritons (SPP) are supported by several different optical 

waveguide configurations. Thin metal films sandwiched between two semi-infinite 

dielectric media are known to support bound and leaky SPP modes with symmetric 

and anti-symmetric transverse-magnetic field distributions across the film 

thickness.
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HYBRID PLASMONIC DEVICES

Hybrid plasmonic devices can be used for a variety of applications such as 

polarizers, filters, modulators and switches.

Figure 12: Hybrid plasmonic devices incorporating dielectric and metallic guided 

wave structures.
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THE STRUCTURE

▪ Here we consider the 3D composite plasmonic waveguide which is modeled 

throughout at a wavelength of 633 nm [8]. 

▪ It consists of a dielectric ridge waveguide with core having index of 𝑛1 = 1.478, 

width of 4 µm and height of 2 µm, covered by a 50 nm thick gold stripe with 

complex index of 0.197 − 3.466𝑗 over a finite length 𝐿, the refractive index of the 

substrate 𝑛2 = 1.471. The superstrate index was chosen to vary from 1.3 to 1.44.

30
Alina Karabchevsky, James S Wilkinson, and Michalis N Zervas. Transmittance and surface intensity in 3d composite plasmonic waveguides. Optics express, 

23(11):14407-14423, 2015.
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OPTICAL THEOREM AND COMPLEX INDEX 
OF REFRACTION
The index of refraction is linearly related to the forward scattering amplitude

𝑛 = 1 + 2𝜋𝑁𝑘−2𝑆(0)

Forward scattering amplitude 𝑆(0) of a medium having 𝑁 particles per unit volume 

and reduced wavenumber of light is 𝑘𝑑 =
𝜔

𝑐
= 2𝜋(𝑛 + 𝑗𝜅)/𝜆0. 

Using 𝜎tot = 𝜎ext = 4𝜋𝑁𝑘−1ℒ𝑆(0) we obtain relation of dispersion of light by Kramers-

Kronig (KK) considering causal propagation of radiation in a medium. The dispersion 

relation is gives as

ℛ𝑆(0, 𝜔)  =
1

2𝜋2𝐶
𝒫 න

0

∞ 𝜔′𝜎tot 𝜔′

𝜔′2 − 𝜔2
𝑑𝜔′

This is the Hilbert transform relation between the real and the imaginary parts of the 

refractive index as a function of frequency.
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KRAMERS-KRONIG RELATIONS

Kramers-Kronig relation can be used to calculate the complex refractive index of a 

material.

𝑛 𝜔 − 1 =
2

𝜋
𝒫 න

0

∞ 𝜔′𝜅 𝜔′

𝜔′2 − 𝜔2
𝑑𝜔′

𝜅 𝜔 = −
2𝜔

𝜋
𝒫 න

0

∞ 𝑛 𝜔′ − 1

𝜔′2 − 𝜔2
𝑑𝜔′

where 𝒫 is the Cauchy principal value and the complex refractive index is ෤𝑛 = 𝑛 + 𝑗𝜅.

32
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DISPERSION OF A MEDIUM

Figure 13: Dispersions calculated by using the KK relations.
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H.W.

1. Derive the KK dispersion relation between forward scattering amplitude and the 
total cross-section.

2. Derive the KK dispersion relation between refractive index and extinction 
coefficient.

3. Why imaginary part of complex optical index is named extinction coefficient?

4. Why the real part of complex optical index has geometrical meaning?

5. Explain the physical meaning of the causality in Eqs. (20)-(21).
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MODAL COUPLING ACROSS 
DISCONTINUITIES IN WAVEGUIDES
The discontinuity in the waveguide will produce a reflected guided mode 𝐸𝑟 and 

forward 𝐸𝑓𝑟 and backward 𝐸𝑏𝑟 traveling radiation modes as well as the transmitted 

guided mode 𝐸𝑡. The continuity of the electromagnetic fields across the discontinuity 

will then give, for TE modes

𝐸𝑖 + 𝐸𝑟 + 𝐸𝑏𝑟 = 𝐸𝑡 + 𝐸𝑓𝑟

where 𝑖, 𝑟, 𝑡 are incident, reflected and transmitted guided modes, respectively. 𝑓𝑟 

and 𝑏𝑟 are forward 𝑆(0) and backward 𝑆(𝜋) scattered radiation modes. Only 𝐸𝑖 

represents a single mode.

35
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FIELD DISTRIBUTIONS - 𝑧 = 0 𝜇𝑚

The general complex field distributions at the boundary between input waveguide 

and waveguide with gold overlayer, while ignoring reflected and radiated modes, 

are:

𝐸𝑥𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝑥𝛾1  𝐸𝑦𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝑦𝛾1

𝐻𝑥𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝑥𝛾1  𝐻𝑦𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝑦𝛾1

𝑬 = 𝐸𝑥 ො𝑥 + 𝐸𝑦 ො𝑦 + 𝐸𝑧 Ƹ𝑧 and 𝑯 = 𝐻𝑥 ො𝑥 + 𝐻𝑦 ො𝑦 + 𝐻𝑧 Ƹ𝑧 where ො𝑥, ො𝑦 and Ƹ𝑧 are unit vectors in the 

𝑥, 𝑦 and 𝑧 directions, respectively.

36
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BONUS

The task:

Derive transmittance and surface intensity while considering reflected and radiated 

modes.

Figure 14: Plasmonic grating overlayer.
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CROSS-SECTIONS OF ℇ𝑦

Figure 15: Cross-sections of the 𝑦 component of the electric field magnitude for the 

structure shown in Fig. 10 with a superstrate index of 1.4 for different regions [8].
38
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MODE-MATCHING

𝐸𝜉𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝜉𝛾1  𝐻𝜉𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝜉𝛾1

where 𝜉 = 𝑥, 𝑦. An expression for the expansion coefficient between input mode 𝑖0 in 

region 0 and mode 𝑗1 in region 1 is derived using the complex orthogonality 

principle:

ඵ

−∞

∞

𝐄𝑖0 × 𝐇𝛾1 𝑧
+ 𝐄𝛾1 × 𝐇𝑖0 𝑧

𝑑𝑥𝑑𝑦 =

ඵ

−∞

∞

𝐄𝛾1 × 𝐇𝛾1 𝑧
+ 𝐄𝛾1 × 𝐇𝛾1 𝑧

𝑑𝑥𝑑𝑦

where 𝛾1 = 𝑖1, 𝑗1, 𝑚1.
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EXPRESSION OF THE EXPANSION 
COEFFICIENTS
To derive the expression of the expansion coefficient between input mode 𝑖 at the 0 

side of the first step and mode 𝑗 at the gold coated side of the first step 1. Multiplying 

Eq. (23) by 𝐻𝑦𝑗1 and Eq. (24) by 𝐻𝑥𝑗1 and subtracting between them leads to:

𝐸𝑥𝑖0𝐻𝑦𝑗1 − 𝐸𝑦𝑖0𝐻𝑥𝑗1 = 𝐸𝑥𝑗1𝐻𝑦𝑗1 − 𝐸𝑦𝑗1𝐻𝑥𝑗1

Multiplying Eq. (10) by 𝐸𝑦𝑗1 and Eq. (11) by 𝐸𝑥𝑗1 and subtracting between them leads 

to:

− 𝐸𝑦𝑗1𝐻𝑥𝑖0 − 𝐸𝑥𝑗1𝐻𝑦𝑖0 = −(𝐸𝑦𝑧1𝐻𝑥𝑗1 − 𝐸𝑥𝑗1𝐻𝑦𝑗1)

Which is simply:

𝐸𝑥𝑗1𝐻𝑦𝑖0 − 𝐸𝑦𝑗1𝐻𝑥𝑖0 = 𝐸𝑥𝑗1𝐻𝑦𝑗1 − 𝐸𝑦𝑗1𝐻𝑥𝑗1

In Eq. (30)-(32), complex orthogonality principle has been considered. Therefore,     

𝛾 ≠ 𝑗 and 𝐼𝛾,𝑗 = 0 at steps 1 and 2.
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POWER CARRIED BY MODE 𝑗 ON SIDE 1 OF 
DISCONTINUITY
By adding Eq. (30) and Eq. (32) and integrating over a whole range we obtain power 

carried in a mode 𝑗 on the side 1 of the first abrupt step:

ඵ
−∞

∞

𝐄𝑖0 × 𝐇𝑗1 𝑧
+ 𝐄𝑗1 × 𝐇𝑖0 𝑧

𝑑𝑥𝑑𝑦

= ඵ
−∞

∞

2 𝐄𝑗1 × 𝐇𝑗1 𝑧
𝑑𝑥𝑑𝑦

General complex electric and magnetic field distribution components:

𝐄𝛿 𝑥, 𝑦, 𝑧 = 𝑎𝛿
ഥℇ𝛿 𝑥, 𝑦 exp −𝑗𝛽𝛿𝑧

𝐇𝛿 𝑥, 𝑦, 𝑧 = 𝑎𝛿
ഥℋ𝛿 𝑥, 𝑦 exp −𝑗𝛽𝛿𝑧

where 𝑧 = 0 at the first step, 𝛽𝛿 is a propagation constant of mode 𝛿 and ഥℇ𝛿 𝑥, 𝑦  and 
ഥℋ𝛿 𝑥, 𝑦  are extracted complex field components.
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RELATION BETWEEN EIGENMODES AT AN 
ABRUPT STEP
By substituting Eq. (34) and Eq. (35) into Eq. (33) we obtain:

𝑎𝑖0𝑎𝛾1 ඵ
−∞

∞

ഥℇ𝑖0 × ഥℋ𝛾1 𝑧
+ ഥℇ𝛾1 × ഥℋ𝑖0 𝑧

𝑑𝑥𝑑𝑦 =

= 𝑎𝛾1
2

ඵ
−∞

∞

2 ഥℇ𝛾1 × ഥℋ𝛾1 𝑧
𝑑𝑥𝑑𝑦 =

To obtain a relation between eigenmodes at an abrupt step:

𝑎𝑖0 𝐼𝑖0,𝛾1 + 𝐼𝛾1,𝑖0 = 𝑎𝛾12𝐼𝛾1,𝛾1

𝑎𝛾1 = 𝑎𝑖0

𝐼𝑖0,𝛾1 + 𝐼𝛾1,𝑖0

2𝐼𝛾1,𝛾1
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EIGENMODES

where

𝐼𝑖,𝛾 = ඵ
−∞

∞

ഥℇ𝑖 × ഥℋ𝛾 𝑧
𝑑𝑥𝑑𝑦 = ඵ

−∞

∞

ℇ𝑥𝑖ℋ𝑦𝛾 − ℇ𝑦𝑖ℋ𝑥𝛾 𝑑𝑥𝑑𝑦

Let define complex 𝐴𝛿

𝐴𝛿 = 𝐴𝛿 exp −𝑗𝜙𝛿

𝐴𝛿 is related to the power carried by a mode as:

𝑃𝛿 = 𝐴𝛿
2

The aim: each mode carrying power of unity:     𝑃𝛿 = 1

43

(38)

(39)

Alina Karabchevsky, Integrated Photonics



NORMALIZATION OF EIGENMODES

𝑎𝛿 = 𝑁𝛿𝐴𝛿 =
𝐸𝛿 𝑥, 𝑦, 𝑧

ℇ𝛿 𝑥, 𝑦 exp −𝑗𝛽𝛿𝑧

The normalization factor having unity power:

𝑁𝛿 =
2

ℜ ∞−׭

∞ ഥℇ𝑖 × ഥℋ𝛾
∗

𝑧
𝑑𝑥𝑑𝑦

1/2

where
ഥℇ = ℇ𝑥 ො𝑥 + ℇ𝑦 ො𝑦 + ℇ𝑧 Ƹ𝑧

ഥℋ = ℋ𝑥 ො𝑥 + ℋ𝑦 ො𝑦 + ℋ𝑧 Ƹ𝑧
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NORMALIZATION

We express normalization factor 𝑁𝛿 as:

𝑁𝛿 =
2

ℜ 𝐼𝛿,𝛿

Which is:

𝐴𝛾1𝑁𝛾1 =
𝐴𝛾0𝑁𝛾0 𝐼𝑖0,𝛾1 + 𝐼𝛾1,𝑖0

2𝐼𝛾1,𝛾1

Let define expansion coefficient 𝑐𝑖0,𝛾1:

𝑐𝑖0,𝛾1 =
𝑎𝛾1

𝑎𝑖0
=

𝑁𝑖0

𝑁𝑗1
∙

𝐼𝑖0,𝑗1 + 𝐼𝑗1,𝑖0

2𝐼𝑗1,𝑗1

which expands mode 𝑖 at 0 side into mode 𝑗 at side 1 of 1st abrupt step.
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EXPANSION COEFFICIENT

For 𝑧 = 0:

𝑎𝑖0ℋ𝜉𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝑎𝛾1ℋ𝜉𝛾1  𝑎𝑖0ℇ𝜉𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝑎𝛾1ℇ𝜉𝛾1

The power in any region is defined as:

𝑃 =
1

2
ℜ ඵ

−∞

∞

ℇ × ℋ∗
𝑧𝑑𝑥𝑑𝑦

An expansion coefficient 𝑐𝑖0,𝛾1 expanding mode 𝑖1 from region 0 into mode 𝛾1 in 

region 1 over the first abrupt step is:

𝑐𝑖0,𝛾1 =
𝑎𝛾1

𝑎𝑖0
=

𝑁𝑖0

𝑁𝛾1
∙

𝐼𝑖0,𝛾1 + 𝐼𝛾1,𝑖0

2𝐼𝛾1,𝛾1
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EXPANSION COEFFICIENT

At 𝑧 = 𝐿, the expansion coefficients are derived in a similar manner to that detailed 

above resulting in:

𝑐𝑖1,𝛾2 =
𝐼𝛾1,𝑗2 + 𝐼𝑖2,𝛾1

2𝐼𝑖2,𝑖2
exp −𝑗 𝛽𝛾2 − 𝛽𝑖1 𝐿

Since 𝑎𝛾1 = 𝑐𝑖0,𝛾1𝑎𝑖0

𝑎𝑖2 = 𝑐𝑖0,𝛾1𝑎𝑖0𝑐𝛾1,𝑖2

or

𝐴𝑖2𝑁𝑖2 = 𝑐𝑖0,𝛾1𝐴𝑖0𝑁𝑖0𝑐𝛾1,𝑖2
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BONUS

The task:

1. Derive expansion coefficients considering reflection and radiation modes when 

𝑧 = 𝐿.

Figure 16: Plasmonic grating overlayer [8].
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SURFACE INTENSITY

where ℇ1 and ℋ1

ℇ1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝑖0,𝛾1ℇ𝛾1  ℋ1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝑖0,𝛾1ℋ𝛾1

𝑃1/𝑃0 < 1 and surface intensity of, for example, the 𝑦 component of an electric field 

(normalized to the complex input field amplitude 𝑎𝑖0) is:

Intensity = 𝐸 𝑥, 𝑦𝑠 , 𝑧 2 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝑖0,𝛾1ℇ𝑦𝛾1(𝑥, 𝑦𝑠 , 𝑧)

2

where 𝑦𝑠 = 𝑑 + 𝑡
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CALCULATED SURFACE INTENSITY

Figure 17: Calculated surface intensity profiles at 𝑥 = 0 and along 𝐿 = 100 𝜇𝑚 [8].
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CALCULATED SURFACE INTENSITY

Figure 18: Mapped surface intensity [8].
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FIELD DISTRIBUTIONS - 𝑧 = 𝐿

𝐸𝑥𝑖2 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝑥𝛾1

𝐸𝑦𝑖2 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝑦𝛾1

𝐻𝑥𝑖2 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝑥𝛾1

𝐻𝑦𝑖2 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝑦𝛾1

Multiplying Eq. (51) by 𝐻𝑦𝑖2 and Eq. (52) by 𝐻𝑥𝑖2 and subtracting between them leads to:

𝐸𝑥𝛾1𝐻𝑦𝑖2 − 𝐸𝑦𝛾1𝐻𝑥𝑖2 = 𝐸𝑥𝑖2𝐻𝑦𝑖2 − 𝐸𝑦𝑖2𝐻𝑥𝑖2
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FIELD DISTRIBUTIONS - 𝑧 = 𝐿

Multiplying Eq. (53) by 𝐸𝑦𝑖2 and Eq. (54) by 𝐸𝑥𝑖2 and subtracting between them leads 

to:

𝐸𝑦𝑖2𝐻𝑥𝛾1 − 𝐸𝑥𝑖2𝐻𝑦𝛾1 = 𝐸𝑦𝑖2𝐻𝑥𝑖2 − 𝐸𝑥𝑖2𝐻𝑦𝑖2

Then, we are adding Eq. (55) and Eq. (56) and integrating over a whole range to 

obtain power carried in a mode 𝑖 on the side 2 of the second step:

ඵ
−∞

∞

𝐸𝛾1 × 𝐻𝑖2 𝑧
+ 𝐸𝑖2 × 𝐻𝛾1 𝑧

𝑑𝑥𝑑𝑦 =

= ඵ
−∞

∞

𝐸𝑖2 × 𝐻𝑖2 𝑧 + 𝐸𝑖2 × 𝐻𝑖2 𝑧 𝑑𝑥𝑑𝑦

∞−׭ =

∞
2 𝐸𝑖2 × 𝐻𝑖2 𝑧 𝑑𝑥𝑑𝑦

53

(57)

(56)

Alina Karabchevsky, Integrated Photonics



FIELD DISTRIBUTIONS - 𝑧 = 𝐿

The field components as an amplitude and phase at the second step are:

𝐸𝛿 𝑥, 𝑦, 𝐿 = 𝑎𝛿ℇ𝛿 𝑥, 𝑦 exp −𝑗𝛽𝛿𝐿

By substituting Eq. (51) and Eq. (54) into Eq. (57) we obtain:

𝑎𝛾1𝑎𝑖2 exp −𝑗 𝛽𝛾1 + 𝛽𝑖2 𝐿 ඵ
−∞

∞

ℇ𝛾1 × ℋ𝑖2 𝑧
+ ℇ𝑖2 × ℋ𝛾1 𝑧

𝑑𝑥𝑑𝑦

which is equal to:

𝑎𝑖2
2 exp −𝑗2𝛽𝑖2𝐿 ඵ

−∞

∞

ℇ𝑖2 × ℋ𝑖2 𝑧 + ℇ𝑖2 × ℋ𝑖2 𝑧 𝑑𝑥𝑑𝑦

54

(60)

(59)

(58)

Alina Karabchevsky, Integrated Photonics



FIELD DISTRIBUTIONS - 𝑧 = 𝐿

by simplifying Eq. (59) = Eq (60), we obtain

𝑎𝛾1 exp −𝑗𝛽𝛾1𝐿 ඵ
−∞

∞

ℇ𝛾1 × ℋ𝑖2 𝑧
+ ℇ𝑖2 × ℋ𝛾1 𝑧

𝑑𝑥𝑑𝑦 =

𝑎𝑖2 exp −𝑗𝛽𝑖2𝐿 ඵ
−∞

∞

ℇ𝑖2 × ℋ𝑖2 𝑧 + ℇ𝑖2 × ℋ𝑖2 𝑧 𝑑𝑥𝑑𝑦
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TRANSMITTANCE

𝑇 =
𝐴𝑖2

𝐴𝑖0

2

= ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝑖0,𝛾1𝑐𝛾1,𝑖2

𝑁𝑖0

𝑁𝑖2

2

𝑇 =
𝐴𝑖2

𝐴𝑖0

2

= ෍

𝛾=𝑖,𝑗,𝑚

𝐼𝑖0,𝑗1 + 𝐼𝑗1,𝑖0

2𝐼𝑗1,𝑗1

𝐼𝛾1,𝑖2 + 𝐼𝑖2,𝛾1

2𝐼𝑖2,𝑖2
exp −𝑗𝛽𝛾1𝐿

2
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PREDICTION OF TRANSMITTANCE

Transmittance dB:

𝑇 = ෍

𝛾=𝑖,𝑗,𝑘

𝐼𝑖0,𝛾1 + 𝐼𝛾1,𝑖0
2

4𝐼𝑖0,𝑖0𝐼𝛾1,𝛾1
exp −𝑗𝛽𝛾1𝐿

2

57

Figure 19: Calculated optical 

transmittance for 𝐿 = 2 mm based 

on our model and of 𝐿 = 1 mm [8].
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Relation of the fields at the second step to calculate the power are:

ℇ𝑥𝛾1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝛾1,𝑖2ℇ𝑥𝑖2

ℇ𝑦𝛾1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝛾1,𝑖2ℇ𝑦𝑖2

ℋ𝑥𝛾1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝛾1,𝑖2ℋ𝑥𝑖2

ℋ𝑦𝛾1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝛾1,𝑖2ℋ𝑦𝑖2
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SUMMARY

▪ Theoretical study of planar waveguides with plasmonic overlayer.

▪ Coupling of hybrid real field distributions over a discontinuity in a waveguide 
horns.

▪ Mapping of surface intensity in 3D composite-plasmonic waveguides.

▪ Optical transmittance follows HDM modal attenuation loss.
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ORTHOGONALITY OF COMPLEX MODES

▪ ∀𝑖 ≠ 𝑗 𝐼𝑖,𝑗 = 0

𝐸𝑥𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝑥𝛾1

𝐸𝑦𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐸𝑦𝛾1

𝐻𝑥𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝑥𝛾1

𝐻𝑦𝑖0 = ෍

𝛾=𝑖,𝑗,𝑚

𝐻𝑦𝛾1
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MATCHING MODES EQUATIONS

෍

𝛾=𝑖,𝑗,𝑚

𝐴𝛾1 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝑖𝛾𝐴𝛾0

𝐴𝛾2 = ෍

𝛾=𝑖,𝑗,𝑚

𝑐𝛾𝑖𝐴𝛾1

𝑐𝑖𝛾 =
𝐼𝑖0,𝛾1 + 𝐼𝛾1,𝑖0

2𝐼𝛾1,𝛾1

ℜ 𝐼𝛾1,𝛾1

ℜ 𝐼𝑖0,𝑖0

𝑐𝛾𝑖 =
𝐼𝛾1,𝑖2 + 𝐼𝑖2,𝛾1

2𝐼𝑖2,𝑖2

ℜ 𝐼𝛾1,𝛾1

ℜ 𝐼𝑖0,𝑖0

Note:    𝐼𝑖2,𝑖2 = 𝐼𝑖0,𝑖0  ⇒  𝐼𝛿,𝛿 = ∞−׭

∞ ഥℇ𝛿 × ഥℋ𝛿 𝑧 𝑑𝑥𝑑𝑦
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NUMERICAL APPROACH

Figure 20: Cross-sections of the 

y-component of the electric field 

magnitude for the structure with 

a superstrate index of 1.4 in (a) a 

purely dielectric mode (DM) in a 

dielectric waveguide in the 𝑧 < 0 

and 𝑧 > 𝐿 regions [8].
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MODES

Evolution of the dominant 𝑦-component 

of electric field magnitudes for quasi-

transverse magnetic modes at resonance 

having superstrate index of 1.365, and far 

from it, at low superstrate index: 1.3 and 

high superstrate index 1.44 as labeled on 

the figure accordingly for DM, HDM, SPP-

s and SPP-a guided modes [8].
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ANALYSIS OF COMPLEX 𝑁𝑒𝑓𝑓

Effective refractive index RIU:

𝑁eff =
ℜ 𝛽 𝜆

2𝜋

Modal attenuation coefficient dB/cm:

𝛼 = 0.2 log 𝑒 ℑ 𝛽
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ANALYSIS OF COMPLEX 𝑁𝑒𝑓𝑓

Figure 21: Variation of (a) effective 

refractive indices and (b) modal 

attenuation coefficients a in the 

gold-coated region 0 < 𝑧 < 𝐿  with 

𝑛3; (c) zoomed effective indices in 

the region enclosed in (a) [8].
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SURFACE INTENSITY

Surface Intensity 𝑉2/𝑚2:

𝐼 = ෍

𝛾=𝑖,𝑗,𝑘

𝑐𝑖0,𝛾1ℇ𝛾1

2

Note: The superstrate indices, 𝑛3 which yield the minimum in transmittance and the 

maximum in integrated surface intensity are labeled in (d).
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SURFACE INTENSITY

Figure 22: Mapped surface 

intensity: (a) 𝑦 component, (b) 𝑧 

component and (c) 𝑥 component 

along 50 mm gold length for a 

superstrate index of 1.44 and (d) 

integrated surface intensity and 

transmittance for a 𝐿 = 200 mm 

gold length vs. 𝑛3 [8].
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CLOAKING WITH COMPOSITE PLASMONIC 
WAVEGUIDES
The interesting characteristics of composite plasmonic waveguides can be used to 

achieve novel devices. One of them is an invisibility cloak. Using transformation 

optics technique that is built upon two key observations:

▪ Maxwell's equations retain the same format under coordinate transformations in 

space, i.e. they are form-invariant under coordinate transformations.

▪ Maxwell's equations interpreted in different coordinate systems are equivalent to 

changing the medium parameters in the constitutive relationships.
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TRANSFORMATION OPTICS

Consider a set of time-harmonic electric and magnetic fields ෨𝐄 and ෩𝐇 at an angular 

frequency 𝜔  in a cartesian (𝑥, 𝑦, 𝑧) coordinate system. Adopting the 𝑒𝑗𝜔𝑡  time 

convention, the fields satisfy Maxwell's curl equations at any source-free point.

∇′ × ෨𝐄′ = −𝑗𝜔𝜇′෩𝐇′

∇′ × ෩𝐇′ = 𝑗𝜔𝜀′ ෨𝐄′

where the constitutive relationships
෩𝐁 = 𝝁෩𝐇 ෩𝐃 = 𝜺 ෨𝐄

where ෩𝐃 and ෩𝐁 the electric and magnetic flux densities, respectively, 𝜺 is the electric 

permittivity tensor and 𝝁 is the magnetic permeability tensor.
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TRANSFORMATION OPTICS

Since Maxwell's equations are form-invariant under coordinate transformations, the 

two curl equations in the transformed system may be written as:

∇′ × ෨𝐄′ = −𝑗𝜔𝝁′෩𝐇′

∇′ × ෩𝐇′ = 𝑗𝜔𝜺′ ෨𝐄′
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TRANSFORMATION OPTICS

Let the coordinate transformation be described by the 3x3 Jacobian matrix 𝐀 defined as:

𝐀 =

𝜕𝑥′/𝜕𝑥 𝜕𝑥′/𝜕𝑦 𝜕𝑥′/𝜕𝑧

𝜕𝑦′/𝜕𝑥 𝜕𝑦′/𝜕𝑦 𝜕𝑦′/𝜕𝑧

𝜕𝑧′/𝜕𝑥 𝜕𝑧′/𝜕𝑦 𝜕𝑧′/𝜕𝑧

Both field and medium quantities in the (𝑥′, 𝑦′, 𝑧′) system are related to their respective 

counterparts in the (𝑥, 𝑦, 𝑧) system. Specifically, the medium tensor parameters, 𝜇0
′  and 𝜀0

′ , 

are related to 𝜇0 and 𝜀0 in the original space by the following expressions

𝝁′ =
𝐀𝜇𝐀𝑇

det{𝐀}
 𝜺′ =

𝐀𝜀𝐀𝑇

det{𝐀}

In addition, the fields in the transformed system are given in terms of the fields in the 

original system via
෨𝐄′ = 𝐀−1 𝑇 ෨𝐄 ෩𝐇′ = 𝐀−1 𝑇 ෩𝐇
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THE COMPOSITE PLASMONIC WAVEGUIDE 
STRUCTURE
▪ Wavelength of 𝜆 = 637  nm illuminates the dielectric waveguide exciting the 

fundamental mode guided in region 0.

▪ Region 1 is characterized by the metasurface and Si nano-spacer placed on the 

waveguide with length 𝐿  in the propagation direction exciting three hybrid 

plasmonic modes.

▪ Region 2 is identical to the region 0 in terms of the optical properties and 

functionality. A scattering object with optical index of 1.3 is placed on the 

metasurface.
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THE COMPOSITE PLASMONIC WAVEGUIDE 
STRUCTURE

Figure 23: Illustration of the composite plasmonic waveguide structure and materials 

to study the invisibility cloaking scheme [9].
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COMPOSITE PLASMONIC WAVEGUIDE CLOAK 
DESIGN
If the mapping satisfies the Cauchy-Riemann conditions given by:

Τ𝜕𝑥′ 𝜕𝑥 = Τ𝜕𝑧′ 𝜕𝑧

Τ𝜕𝑥′ 𝜕𝑧 = − Τ𝜕𝑧′ 𝜕𝑧

the transformed material becomes inhomogeneous and isotropic. The resulting 

transformation is composed of a quasi-orthogonal grid with an effective index in 

each cell:

Figure 24: Transformed mesh using quasi-conformal transformation theme (black 

mesh) and calculated effective mode index, 𝑛eff [9].
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CLOAKING RESULTS AND PERFORMANCE

The figure below shows calculated integrated total surface intensity to assess the 

effectiveness of evanescent invisibility cloak with a composite plasmonic waveguide.

Figure 25: Calculated spatial surface intensities 𝜀𝑦 𝑥, 𝑦
2
at 𝑦 = 𝑦𝑠 in the composite 

plasmonic waveguide: (a) slab gold overlayer, (b) slab gold overlayer and an object 

index of 1.3, (c) transformed metasurface and (d) transformed metasurface and an 

object [9]. 75
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