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OUTLINE

▪ Mode analysis with EM theory

▪ Wave propagation

▪ Single-mode fibers

▪ Birefringence

▪ Losses
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MAXWELL’S EQUATIONS

Like all electromagnetic phenomena, propagation of optical fields in fibers is 

governed by Maxwell's equations. For a nonconducting medium without free 

charges:

where 𝐸 is the electric field vector, 𝐷 is the electric displacement field vector, 𝐻 is 

the magnetic field vector and 𝐵 is the magnetic flux density vector.

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐻 =
𝜕𝐷

𝜕𝑡

∇ ∙ 𝐷 = 0

∇ ∙ 𝐵 = 0
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Faraday’s law

Gauss law

Gauss's law for magnetism

Ampere-Maxwell law 



MAXWELL'S EQUATIONS

▪ 𝐷 and 𝐵 are related to the field vectors and are defined as

𝐷 = 𝜀0𝐸 + 𝑃

𝐵 = 𝜇0 𝐻 + 𝑀

where 𝜀0 and 𝜇0 are the electric permittivity and magnetic permeability of vacuum, 

respectively, 𝑃 is the polarization and 𝑀 is the magnetization.

▪ For optical fibers 𝑀 = 0 because of the nonmagnetic nature of silica glass.

▪ Evaluation of the electric polarization 𝑃  requires a microscopic quantum-

mechanical approach.
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MAXWELL'S EQUATIONS

Although such an approach is essential when the optical frequency is near a medium 

resonance, a phenomenological relation between 𝑃 and 𝐸 can be used far from 

medium resonances. 

This is the case for optical fibers in the wavelength region 0.5-2 µm, a range that 

covers the low loss region of optical fibers that is of interest for fiber-optic 

communication systems.

In general, the relation between 𝑃 and 𝐸 can be nonlinear. Here, in discussion of 

fiber modes, the nonlinear effects in optical fibers will be ignored.
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RELATION BETWEEN ELECTRIC POLARIZATION 𝑃
AND ELECTRIC FIELD VECTOR 𝐸 - GENERAL CASE
The polarization of the material is defined as

𝐏 = 𝜀0𝜒𝐄

where 𝜒 is the susceptibility which is a measure of the polarizability of the material.

𝐏 = 𝜀0 𝜒 1 𝐄 + 𝜒 2 𝐄𝐄 + 𝜒 3 𝐄𝐄𝐄 + ⋯ = 𝐏L + 𝐏NL
(2)

+ 𝐏NL
(2)

+ ⋯

where 𝜒 1  is the linear susceptibility and 𝜒 2  and 𝜒 3  in the second and third order 

nonlinear susceptibility. 𝜒 𝑗  is a tensor of 𝑗 + 1 rank.
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RELATION BETWEEN ELECTRIC POLARIZATION 𝑃
AND ELECTRIC FIELD VECTOR 𝐸 - GENERAL CASE
▪ If the intensity of the applied field is small 

the response is linear, as shown in (a).

▪ If the intensities are increased, the 

response of the material will become 

nonlinear (symmetric material - (b)).

▪ If no symmetry center is present in the 

crystal, the symmetry rule no longer holds 

and it follows a potential energy function 

according to (c).
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Figure 1: Potential energy function for 

linear and nonlinear media and the 

corresponding Fourier transforms [1].



RELATION BETWEEN ELECTRIC POLARIZATION 𝑃
AND ELECTRIC FIELD VECTOR 𝐸 - GENERAL CASE
The linear susceptibility 𝜒 1  is a tensor, consisting of 31 × 3 elements.

𝑃L𝑥(𝜔)
𝑃L𝑦(𝜔)

𝑃L𝑧(𝜔)

= 𝜀0

𝜒𝑥𝑥
1

𝜔 𝜒𝑥𝑦
1

𝜔 𝜒𝑥𝑧
1

𝜔

𝜒𝑦𝑥
1

𝜔 𝜒𝑦𝑦
1

𝜔 𝜒𝑦𝑧
1

𝜔

𝜒𝑧𝑥
1

𝜔 𝜒𝑧𝑦
1

𝜔 𝜒𝑥𝑧
1

𝜔

𝐸𝑥 𝜔

𝐸𝑦 𝜔

𝐸𝑧 𝜔

It can be expressed as a summation over the distinct components as well

𝑃L𝑖 𝜔 = 𝜀0 ෍

𝑗

𝜒𝑖𝑗
1

𝜔 𝐸𝑗 𝜔

where 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧.
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RELATION BETWEEN ELECTRIC POLARIZATION 𝑃
AND ELECTRIC FIELD VECTOR 𝐸 - GENERAL CASE
The second order nonlinear susceptibility 𝜒 2  consists of 32 × 3 elements and is a tensor of third rank.

𝑃L𝑥(𝜔)
𝑃L𝑦(𝜔)

𝑃L𝑧(𝜔)

= 𝜀0

𝜒𝑥𝑥𝑥
2

𝜔 𝜒𝑥𝑥𝑦
2

𝜔 ⋯ 𝜒𝑥𝑧𝑧
2

𝜔

𝜒𝑦𝑥𝑥
2

𝜔 𝜒𝑦𝑥𝑦
2

𝜔 ⋯ 𝜒𝑦𝑧𝑧
2

𝜔

𝜒𝑧𝑥𝑥
2

𝜔 𝜒𝑧𝑥𝑦
2

𝜔 ⋯ 𝜒𝑥𝑧𝑧
2

𝜔

𝐸𝑥(𝜔1) 𝐸𝑥(𝜔2)
𝐸𝑥(𝜔1) 𝐸𝑦(𝜔2)

𝐸𝑥(𝜔1) 𝐸𝑧(𝜔2)
𝐸𝑦(𝜔1) 𝐸𝑥(𝜔2)

𝐸𝑦(𝜔1) 𝐸𝑦(𝜔2)

𝐸𝑦(𝜔1) 𝐸𝑧(𝜔2)

𝐸𝑧(𝜔1) 𝐸𝑥(𝜔2)
𝐸𝑧(𝜔1) 𝐸𝑦(𝜔2)

𝐸𝑧(𝜔1) 𝐸𝑧(𝜔2)

It can be expressed as a summation over the distinct components as well

𝑃NL𝑖
(2)

𝜔 = 𝜔1 + 𝜔2 = 𝜀0 ෍

𝑗𝑘

𝜒𝑖𝑗𝑘
2

𝜔1, 𝜔2 𝐸𝑗 𝜔1 𝐸𝑘 𝜔2

where 𝑖, 𝑗, 𝑘 = 𝑥, 𝑦, 𝑧.
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RELATION BETWEEN ELECTRIC POLARIZATION 
𝑃 AND ELECTRIC FIELD VECTOR 𝐸
Relation between 𝑷 and 𝑬

𝑃 𝑟, 𝑡 = 𝜀0 න
−∞

∞

𝜒 1 𝑟, 𝑡 − 𝑡′ 𝐸 𝑟, 𝑡′  d𝑡′

where 𝜒 1  is the linear susceptibility which is in general a second-rank tensor but a 

scalar for an isotropic medium such as silica glass. 

Dimensionless proportionality constant, electric susceptibility 𝜒 , indicates the 

degree of polarization of a dielectric material in response to an applied electric 

field. The greater the electric susceptibility 𝜒, the greater the ability of a material to 

polarize in response to the field, and thereby reduce the total electric field 𝐸 inside 

the material (and store energy). It is in this way that the electric susceptibility 𝜒 

influences the electric permittivity 𝜀 of the material.
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RELATION BETWEEN ELECTRIC POLARIZATION 
𝑃 AND ELECTRIC FIELD VECTOR 𝐸
Note: Optical fibers become slightly birefringent because of unintentional 

variations in the core shape or in local strain.

Equation in the previous slide assumes a spatially local response. However, it 

includes the delayed nature of the temporal response, a feature that has important 

implications for optical fiber communications through chromatic dispersion.
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FREQUENCY-DEPENDENT DIELECTRIC 
CONSTANT 𝜀𝑟(𝑟, 𝜔)
Taking the curl of Eq. (2), Eq. (5) and Eq. (6), we obtain the wave equation:

∇ × ∇ × 𝐸 = −
1

𝑐2

𝜕2𝐸

𝜕𝑡2
− 𝜇0

𝜕2𝑃

𝜕𝑡2

where 𝑐 = 𝜀0𝜇0. By introducing the Fourier transform:

෨𝐸 𝑟, 𝜔 = න
−∞

∞

𝐸 Ԧ𝑟, 𝑡 𝑒𝑗𝜔𝑡 d𝑡

as well as a similar relation for 𝑃 Ԧ𝑟, 𝑡 , and by using Eq. (11) can be written in the 

frequency domain as:

∇ × ∇ × ෨𝐸 = −𝜀𝑟 Ԧ𝑟, 𝜔
𝜔2

𝑐2
෨𝐸
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FREQUENCY-DEPENDENT DIELECTRIC 
CONSTANT 𝜀𝑟(𝑟, 𝜔)
where 𝜀𝑟 is the frequency-dependent dielectric constant which is defined as:

𝜀𝑟 𝑟, 𝜔 = 1 + ෤𝜒 𝑟, 𝜔

where ෤𝜒 is the Fourier transform of 𝜒.
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REFRACTIVE INDEX 𝑛 AND ABSORPTION 
COEFFICIENT 𝛼
In general, 𝜀𝑟 𝑟, 𝜔  is complex. Its real and imaginary parts are related to the 

refractive index 𝑛 and the absorption coefficient 𝛼 by the definition:

𝜀𝑟 = 𝑛 +
𝑗𝛼𝑐

2𝜔

2

By using Eqs. (14) and (15), 𝑛 and 𝛼 are related to ෤𝜒 as:

𝑛 = 1 + ℜ{ ෤𝜒}

𝛼 =
𝜔

𝑛𝑐
ℑ{ ෤𝜒}

Both 𝑛 and 𝛼 are frequency dependent. The frequency dependence of 𝑛 is referred 

to as chromatic dispersion or simply as material dispersion.
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REFRACTIVE INDEX 𝑛 AND ABSORPTION 
COEFFICIENT 𝛼
Note: Fiber dispersion is shown to limit the performance of fiber-optic 

communication systems in a fundamental way.

To solve Eq. (13), two simplifications can be made:

1) The term 𝜀𝑟  can be taken to be real and replaced by 𝑛2 because of low optical 

losses in silica fibers.

2) Since 𝑛 𝑟, 𝜔  is independent of the spatial coordinate 𝑟 in both the core and the 

cladding of a step-index fiber, one can use the identity:

∇ × ∇ × ෨𝐸 = ∇ ∇ ∙ ෨𝐸 − ∇2 ෨𝐸 = −∇2 ෨𝐸
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REFRACTIVE INDEX 𝑛 AND ABSORPTION 
COEFFICIENT 𝛼
By using Eq. (18) in Eq. (13), we obtain

∇2 ෨𝐸 + 𝑛2 𝜔 𝑘0
2 ෨𝐸 = 0

where the free-space wave number 𝑘0 is defined as:

𝑘0 =
𝜔

𝑐
=

2𝜋

𝜆

and 𝜆 is the wavelength in vacuum.
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FIBER MODES

An optical mode refers to a specific 

solution of the wave equation (Eq. (19)) that 

satisfies the appropriate boundary 

conditions and has the property that its 

spatial distribution does not change with 

propagation. The fiber modes can be 

classified as guided modes and leaky 

guided modes.
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Figure 2: (a) Leaky guided mode. (b) Guided 

fiber mode. From [Karabchevsky et al ACS 

Photonics 2018]



FIBER MODES

Note: The signal transmission in fiber-optic communication systems takes place 

through the guided modes only. Here, we study the guided modes of a step-index 

fiber.

To take advantage of the cylindrical symmetry, Eq. (19) is written in the cylindrical 

coordinates 𝜌, 𝜙, and 𝑧 as:

𝜕2𝐸𝑧

𝜕𝜌2
+

1

𝜌

𝜕𝐸𝑧

𝜕𝜌
+

1

𝜌2

𝜕𝐸𝑧

𝜕𝜙2
+

𝜕2𝐸𝑧

𝜕𝑧2
+ 𝑛2𝑘0

2𝐸𝑧 = 0

where for a step-index fiber of core radius 𝑎, the refractive index 𝑛 is of the form:

𝑛 = ቊ
𝑛1, 𝜌 ≤ 𝑎
𝑛2, 𝜌 > 𝑎
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FIBER MODES

For simplicity of notation, the tilde over ෨𝐸 has been dropped and the frequency 

dependence of all variables is implicitly understood. Equation (21) is written for the 

axial component 𝐸𝑧 of the electric field vector.

Similar equations can be written for the other five components of 𝐸 and 𝐻. However, 

it is not necessary to solve all six equations since only two components out of six are 

independent. It is customary to choose 𝐸𝑧 and 𝐻𝑧 as the independent components 

and obtain 𝐸𝜌, 𝐸𝜙, 𝐻𝜌 and 𝐻𝜙 in terms of them.
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FIBER MODES

Equation (21) is easily solved by using the method of separation of variables and 

writing 𝐸𝑧 as:

𝐸𝑧 𝜌, 𝜙, 𝑧 = 𝐹 𝜌 Φ 𝜙 𝑍(𝑧)

By using Eq. (23) in Eq. (21), we obtain the three ordinary differential equations:

𝜕2𝑍

𝜕𝑧2
+ 𝛽𝑚

2𝑍 = 0

𝜕2Φ

𝜕𝜙2
+ 𝑚2Φ = 0

𝜕2𝐹

𝜕𝜌2
+

1

𝜌

𝜕𝐹

𝜕𝜌
+ 𝑛2𝑘0

2 − 𝛽𝑚
2 −

𝑚2

𝜌2
= 0
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FIBER MODES

▪ Equation (24a) has a solution of the form 𝑍 = exp(𝑗𝛽𝑚𝑧) , where 𝛽𝑚  is the 

propagation constant.

▪ Similarly, Equation (24b) has a solution Φ = exp(𝑗𝑚𝜙) , but the constant 𝑚  is 

restricted to take only integer values since the field must be periodic in 𝜙 with a 

period of 2𝜋.

▪ Equation (24c) is the well-known differential equation satisfied by the Bessel 

functions. Its general solution in the core and cladding regions can be written as 

under assumption that the diameter of the cladding is infinite:

𝐹 𝜌 = ቊ
𝐴𝐽𝑚 𝑝𝜌 + 𝐴′𝑌𝑚 𝑝𝜌 , 𝜌 ≤ 𝑎

𝐶𝐾𝑚 𝑞𝜌 + 𝐶′𝐼𝑚 𝑞𝜌 , 𝜌 > 𝑎
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FIBER MODES

where 𝑝𝑚
2 = 𝛽1

2 − 𝛽𝑧,𝑚
2

 and 𝑞𝑚
2 = 𝛽𝑧,𝑚

2 − 𝛽2
2

 represent equivalent transversal 

propagation constants in the core and cladding, respectively, with 𝛽𝑖 = Τ𝑛𝑖𝜔 𝑐 = 𝑛𝑖𝑘0. 

𝛽𝑧,𝑚 is the propagation constant in the z-direction.

𝐽𝑚 and 𝑌𝑚 are the first and the second kind of Bessel functions of the 𝑚th order, and 

𝐾𝑚 and 𝐼𝑚 are the first and the second kind of modified Bessel functions of the 𝑚th 

order.

Note: two mode indices are the amplitude maxima of the standing wave patterns in 

the azimuthal and the radial directions, respectively.
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BESSEL FUNCTIONS

Figure 3: Bessel function (top) and modified Bessel functions (bottom) [2].
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H.W.

Solution of the wave equation:

1) Detail the solution of the wave equation to obtain 𝑍(𝑧).
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FIBER MODES

𝐴, 𝐴’, 𝐶, and 𝐶’ are constants that need to be defined using appropriate boundary 

conditions:

▪ First boundary condition - The field amplitude of a guided mode should be finite at 

the center of the core 𝜌 = 0. Since the special function 𝑌𝑚 0 = −∞, one must set 𝐴′

= 0 to ensure that 𝐸𝑧 0  has a finite value.

▪ Second boundary condition - The field amplitude of a guided mode should be zero 

far away from the core (𝜌 = ∞). Since 𝐼𝑚 ∞ ≠ 0, one must set 𝐶′ = 0 to ensure that 

𝐸𝑧 ∞ = 0.

Consider 𝐴′ = 𝐶′ = 0, the solution of Eq. (21) is:

𝐸𝑧 = ቊ
𝐴𝑗𝑚 𝑝𝜌 exp 𝑗𝑚𝜙 exp(𝑗𝛽𝑧), 𝜌 ≤ 𝑎

𝐶𝑗𝑚 𝑞𝜌 exp 𝑗𝑚𝜙 exp(𝑗𝛽𝑧), 𝜌 > 𝑎
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FIBER MODES

▪ Mathematically, 𝐾𝑚(𝑞𝑚𝜌) ∝ exp(−𝑞𝑚𝜌), for 𝑞, 𝑝 > 0 , so that 𝐾𝑚(𝑞𝑚𝜌)  represents an 

exponential decay of optical field over 𝜌 in the fiber cladding.

▪ For a propagation mode, 𝑞𝑚 > 0 is required to ensure that energy does not leak through 

the cladding. In the fiber core, the Bessel function 𝐽𝑚(𝑝𝑚𝜌) oscillates as shown in the 

next frame. This represents a standing-wave pattern in the core over the radius 

direction.

▪ For a propagating mode, 𝑝𝑚 ≥ 0 is required to ensure this standing-wave pattern in the 

fiber core. Mode index or effective index ത𝑛, 𝑛1 < ത𝑛 < 𝑛2, ത𝑛 = Τ𝛽 𝑘0.

Please note that based on the definitions of 𝑝𝑚
2 = 𝛽1

2 − 𝛽𝑧,𝑚
2
 and 𝑞𝑚

2 = 𝛽𝑧,𝑚
2 − 𝛽2

2
, the 

requirement of 𝑞𝑚 > 0 and 𝑝𝑚 ≥ 0 is equivalent to 𝛽2
2 < 𝛽𝑧,𝑚

2 ≤ 𝛽1
2
 or Τ𝑛2 𝑛1 < ൗ𝛽𝑧,𝑚

2 𝛽1

≤ 1. This is indeed equivalent to the mode condition derived by the ray optics. In general, 

it may have multiple solutions in descending numerical order denoting by 𝛽𝑚,𝑛.
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CHARACTERISTICS OF PROPAGATION 
MODES IN THE FIBER
▪ Transverse electric-field mode (TE mode): 𝐸𝑧 = 0

▪ Transverse magnetic-field mode (TM mode): 𝐻𝑧 = 0

▪ Hybrid mode (HE𝑚𝑛 or EH𝑚𝑛 mode): 𝐸𝑧 ≠ 0 and 𝐻𝑧 ≠ 0

▪ V-number is an important parameter of a fiber, which is defined as:

𝑉 = 𝑎 𝑝𝑚
2 + 𝑞𝑚

2

since

𝑝𝑚
2 = 𝛽1

2 − 𝛽𝑧,𝑚
2 =

2𝜋𝑛1

𝜆

2

− 𝛽𝑧,𝑚
2

and

𝑞𝑚
2 = 𝛽𝑧,𝑚

2 − 𝛽2
2 = 𝛽𝑧,𝑚

2 −
2𝜋𝑛1

𝜆

2
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CHARACTERISTICS OF PROPAGATION 
MODES IN THE FIBER
V-number can be expressed as:

𝑉 = 𝑎 𝑝𝑚
2 + 𝑞𝑚

2 =
2𝜋𝑎

𝜆
𝑛1

2 − 𝑛2
2

Relation between guided modes 𝒎 and V-number

𝑚 ≈
𝑉2

2

▪ In a multimode fiber, the number of guided modes can be on the order of several hundreds.

▪ A short optical pulse is injected into a fiber and the optical energy is carried by many 

different modes.

▪ Different modes have different propagation constants 𝛽𝑧,𝑚 in the longitudinal direction and 

they will arrive at the output of the fiber in different times.

▪ The short optical pulse at the input will become a broad pulse at the output.
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CHARACTERISTICS OF PROPAGATION 
MODES IN THE FIBER
▪ In optical communications systems, this introduces signal waveform distortions and 

bandwidth limitations.

To conclude: the single-mode fiber is required in high-speed long distance optical 

systems. The lowest-order propagation mode is HE11, whereas the next lowest modes 

are TE01 and TM01. (𝑚 = 0 and 𝑛 = 1 ; 𝑚 and 𝑛 describe the electric field intensity 

profile. There are 2𝑚 field maxima around the fiber core circumference and 𝑛 field 

maxima along the fiber core radial direction.)
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LINEARLY POLARIZED MODES

Figure 4: Linearly polarized modes.
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CHARACTERISTICS OF PROPAGATION 
MODES IN THE FIBER
TE01 and TM01 have the same cutoff  conditions:

▪ 𝑞01 = 0 so that these two modes radiate in the cladding.

▪ 𝐽0(𝑝01𝑎) = 0 so that the field amplitude at core-cladding interface (𝜌 = 𝑎) is zero.

Under the first condition (𝑞0 = 0), the cutoff  V-number 𝑉 = 𝑎 𝑝01
2 + 𝑞01

2 = 𝑎𝑈01.

Under the second condition, we can find 𝐽0 𝑝01𝑎 = 𝐽0 𝑉 = 0, which implies that 𝑉
= 2.405 as the first root of 𝐽0(𝑉) = 0.

Therefore, the single-mode condition is:

𝑉 =
2𝜋𝑎

𝜆
𝑛1

2 − 𝑛2
2 < 2.405
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FIBER MODES

Solutions of the wave equation

𝐸𝑧,𝑚(𝜌, 𝜙, 𝑧) = ൝
𝐴𝐽𝑚 𝑝𝑚𝜌 exp 𝑗𝑚𝜙 exp(𝑗𝛽𝑧,𝑚𝑧), 𝜌 ≤ 0

𝐶𝐾𝑚 𝑞𝑚𝜌 exp 𝑗𝑚𝜙 exp(𝑗𝛽𝑧,𝑚𝑧), 𝜌 > 0

𝐻𝑧,𝑚(𝜌, 𝜙, 𝑧) = ൝
𝐵𝐽𝑚 𝑝𝑚𝜌 exp 𝑗𝑚𝜙 exp(𝑗𝛽𝑧,𝑚𝑧), 𝜌 ≤ 𝑎

𝐷𝐾𝑚 𝑞𝑚𝜌 exp 𝑗𝑚𝜙 exp(𝑗𝛽𝑧,𝑚𝑧), 𝜌 > 𝑎
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H.W.

Solution of the wave equation:

1) Express the radial components 𝐸𝜌 and 𝐻𝜌.

2) Express the angular components 𝐸𝜙 and 𝐻𝜙.
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FIBER MODES

The other four components 𝐸𝜌, 𝐸𝜙, 𝐻𝜌 and 𝐻𝜙 can be expressed in terms of 𝐸𝑧 and 𝐻𝑧 

by using Maxwell's equations. In the core region, we obtain:

𝐸𝜌 =
𝑗

𝑝2
𝛽

𝜕𝐸𝑧

𝜕𝜌
+ 𝜇0

𝜔

𝜌

𝜕𝐻𝑧

𝜕𝜙

𝐸𝜌 =
𝑗

𝑝2

𝛽

𝜌

𝜕𝐸𝑧

𝜕𝜙
− 𝜇0𝜔

𝜕𝐻𝑧

𝜕𝜌

𝐻𝜌 =
𝑗

𝑝2
𝛽

𝜕𝐻𝑧

𝜕𝜌
− 𝜀0𝑛2

𝜔

𝜌

𝜕𝐸𝑧

𝜕𝜙

𝐻𝜙 =
𝑗

𝑝2

𝛽

𝜌

𝜕𝐻𝑧

𝜕𝜙
+ 𝜀0𝑛2𝜔

𝜕𝐸𝑧

𝜕𝜌

These equations can be used in the cladding region after replacing 𝑝2 by −𝑞2.
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FIBER MODES

Equations (43)-(48) express the electromagnetic field in the core and cladding 

regions of an optical fiber in terms of four constants 𝐴, 𝐵, 𝐶, and 𝐷.

These constants are determined by applying the boundary condition that the 

tangential components of 𝐸 and 𝐻 be continuous across the core-cladding interface.

By requiring the continuity of 𝐸𝑧, 𝐻𝑧, 𝐸𝜙 and 𝐻𝜙 at 𝜌 = 𝑎, we obtain a set of four 

homogeneous equations satisfied by 𝐴, 𝐵, 𝐶, and 𝐷. These equations have a nontrivial 

solution only if the determinant of the coefficient matrix vanishes.
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FIBER MODES

After considerable algebraic details, this condition leads to the following eigenvalue 

equation:

𝐽𝑚
′ 𝑝𝑎

𝑝𝐽𝑚 𝑝𝑎
+

𝐾𝑚
′ 𝑞𝑎

𝑝𝐾𝑚 𝑞𝑎

𝐽𝑚
′ 𝑝𝑎

𝑝𝐽𝑚 𝑝𝑎
+

𝑛2
2

𝑛1
2

𝐾𝑚
′ 𝑞𝑎

𝑝𝐾𝑚 𝑞𝑎
=

𝑚2

𝑎2

1

𝑝2
+

1

𝑞2

1

𝑝2
+

𝑛2
2

𝑛1
2

1

𝑞2

where a prime indicates differentiation with respect to the argument.

▪ For a given set of the parameters 𝑘0, 𝑎, 𝑛1, 𝑛2 the eigenvalue Eq. (38) can be solved 

numerically to determine the propagation constant 𝛽.

▪ In general, Equation (38) may have multiple solutions for each integer value of 𝑚.

▪ These solutions can be enumerated in ascending numerical order and denoted by 𝛽𝑚𝑛 

for a given 𝑚 (𝑛 = 1,2, …). Each value 𝑚𝑛 corresponds to one possible propagation 

mode of the optical field whose spatial distribution is obtained from Eqs. (32)-(37).
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FIBER MODES

Since the field distribution does not change with propagation except for a phase 

factor and satisfies all boundary conditions, it is an optical mode of the fiber.

In general, both 𝐸𝑧 and 𝐻𝑧 are nonzero (except for 𝑚 = 0) in contrast with the planar 

waveguides, for which one of them can be taken to be zero. Therefore, fiber modes 

are referred to as hybrid modes and are denoted by HE𝑚𝑛 or EH𝑚𝑛 depending on 

whether 𝐻𝑧 or 𝐸𝑧 dominates.

In the special case 𝑚 = 0, HE0𝑛  and EH0𝑛  are also denoted by TE0𝑛  and TM0𝑛 

respectively, since they correspond to transverse-electric (𝐸𝑧 = 0) and transverse-

magnetic (𝐻𝑧 = 0) modes of propagation.
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FIBER MODES

▪ A mode is uniquely determined by its propagation constant 𝛽. 

▪ It is useful to introduce a quantity ത𝑛 = 𝛽/𝑘0, called the mode index or effective 
index. 

▪ Mode propagates with an effective refractive index ത𝑛 whose value lies in the range 
𝑛1 > ത𝑛 > 𝑛2. 

▪ A mode ceases to be guided when ത𝑛 ≤ 𝑛2. This can be understood by noting that 
the optical field of guided modes decays exponentially inside the cladding layer 
since:

𝐾𝑚 𝑞𝜌 =
𝜋

2𝑞𝜌

1/2

exp −𝑞𝜌 , 𝑞𝜌 ≫ 1

When ത𝑛 ≤ 𝑛2, 𝑞2 ≤ 0 and the exponential decay does not occur. The mode is said to 

reach cutoff when 𝑞 becomes zero or when ത𝑛 = 𝑛2. 𝑝 = 𝑘0 𝑛1
2 − 𝑛2

2 when 𝑞 = 0.
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H.W.

Cutoff:

Explain the cutoff condition of the guiding in optical fibers in terms of the optical 

fields.
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GUIDED MODES

A parameter that plays an important role in determining the cutoff condition is 

defined as:

𝑉 = 𝑘0𝑎 𝑛1
2 − 𝑛2

2 ≈
2𝜋

𝜆
𝑎𝑛1 2∆

which is the normalized frequency 𝑉 ∝ 𝜔 or simply the V-number.

It is also useful to introduce a normalized propagation constant 𝑏 as:

𝑏 =

𝛽
𝑘0

− 𝑛2

𝑛1 − 𝑛2
=

ത𝑛 − 𝑛2

𝑛1 − 𝑛2
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GUIDED MODES

▪ The figure in the next slide shows a plot of 𝑏 as a function of 𝑉 for a few low-order 

fiber modes obtained by solving the eigenvalue equation (Eq. (38)).

▪ A fiber with a large value of 𝑉 supports many modes. A rough estimate of the 

number of modes for such a multimode fiber is given by 𝑉2/2. For example, a 

typical multimode fiber with 𝑎 = 25 μm and ∆= 5 ∙ 10−3 has 𝑉 ≃ 18 at 𝜆 = 1.3 μm 

and would support about 162 modes. However, 𝑉 = 5 supports 7 modes.

▪ Below a certain value of 𝑉 all modes except the HE11 mode reach cutoff. Such fibers 

support a single mode and are called single-mode fibers.
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NORMALIZED PROPAGATION CONSTANT 𝑏

Figure 5: Normalized propagation constant 𝑏 as a function of normalized frequency 𝑉 

for a few low-order fiber modes. The right scale shows the mode index 𝑛eff.
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SINGLE-MODE FIBERS

▪ Single-mode fibers are designed to support only the HE11 mode, also known as the 

fundamental mode of the fiber.

▪ All other modes are cut off at the operating wavelength.

▪ The V-number determines the number of modes supported by a fiber, as shown in 

the Fig. 5. The cutoff condition of various modes is also determined by 𝑉.

▪ The fundamental mode has no cutoff and is always supported by a fiber.

43



SINGLE-MODE CONDITION

The single-mode condition is determined by the value of 𝑉 at which the TE01 and 

TM01 modes reach cutoff. The eigenvalue equations for these two modes can be 

obtained by setting 𝑚 = 0 in Eq. (41) and are given by:

𝑝𝐽0 𝑝𝑎 𝐾′0 𝑞𝑎 + 𝑞𝐽′0 𝑝𝑎 𝐾0 𝑞𝑎 = 0
𝑝𝑛2

2𝐽0 𝑝𝑎 𝐾′0 𝑞𝑎 + 𝑝𝑛1
2𝐽′0 𝑝𝑎 𝐾0 𝑞𝑎 = 0

A mode reaches cutoff when 𝑞 = 0. Since 𝑝𝑎 = 𝑉 when 𝑞 = 0, the cutoff condition for 

both modes is simply given by 𝐽0 𝑉 = 0. The smallest value of 𝑉 for which 𝐽0 𝑉 = 0 

is 2.405. A fiber designed such that 𝑉 < 2.405 supports only the fundamental HE11 

mode. This is the single-mode condition.
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SINGLE-MODE (SM) CONDITION

▪ Equation (40) can be used to estimate the core radius of the SM fiber used in 

Lightwave system.

▪ For the operating wavelength range 1.3-1.6 µm, the fiber is generally designed to 

become single mode for λ > 1.2 μm. By taking λ > 1.2 μm, 𝑛1 = 1.45 and ∆= 5 ∙ 10−3, 

Eq. (40) shows that 𝑉 < 2.405 for a core radius 𝑎 < 3.2 μm.

▪ The required core radius can be increased to about 4 µm by decreasing ∆ to 3
∙ 10−3. Indeed, most telecommunication fibers are designed with 𝑎 ≈ 4 μm.
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SINGLE-MODE FIBERS

The mode index ത𝑛 at the operating wavelength can be defined as:

ത𝑛 = 𝑛2 + 𝑏 𝑛1 − 𝑛2 ≈ 𝑛2(1 + 𝑏∆)

and by using Fig. 5, which provides 𝑏 as a function of 𝑉 for the HE11 mode. An 

analytic approximation for 𝑏 is:

𝑏 𝑉 ≈ 1.1428 −
0.996

𝑉

2

and is accurate to within 0.2% for 𝑉 in the range 1.5-2.5.
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LINEARLY POLARIZED (LP) MODES

▪ The field distribution of the fundamental 

mode is obtained by using Eqs. (43)-(48). 

Hence, the HE11  mode is approximately 

linearly polarized for weakly guiding 

fibers. It is also denoted as LP01, following 

an alternative terminology in which all fiber 

modes are assumed to be linearly 

polarized.

▪ A different notation LP𝑚𝑛 is sometimes used 

for weakly guiding fibers for which both 𝐸𝑧 

and 𝐻𝑧  are nearly zero ( LP  stands for 

linearly polarized modes).

47

Figure 6: LP modes.



SINGLE-MODE FIBERS

One of the transverse components can be taken as zero for a linearly polarized mode. If 

we set 𝐸𝑦 = 0, the 𝐸𝑥 component of the electric field for the HE11 mode is given by:

𝐸𝑥 = 𝐸0

𝐽0 𝑝𝜌

𝐽0 𝑝𝑎
exp(𝑗𝛽𝑧) , 𝜌 ≤ 𝑎

𝐾0 𝑞𝜌

𝐾0 𝑞𝑎
exp 𝑗𝛽𝑧 , 𝜌 > 0

where 𝐸0  is a constant related to the power carried by the mode. The dominant 

component of the corresponding magnetic field is given by 𝐻𝑦 = 𝑛2 Τ𝜀0 𝜇0
1/2𝐸𝑥.

This mode is linearly polarized along the 𝑥 axis. The same fiber supports another mode 

linearly polarized along the 𝑦 axis. In this sense a single-mode fiber actually supports 

two orthogonally polarized modes that are degenerate and have the same mode index.
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SPOT SIZE

Since the field distribution is cumbersome to use in practice, it is often approximated 

by a Gaussian distribution of the form:

𝐸𝑥 = 𝐴 exp(− Τ𝜌2 𝑤2) exp(𝑗𝛽𝑧)

where 𝑤 is the field radius which also named the spot size.

It is determined by fitting the exact distribution to the Gaussian function or by 

following a variational procedure. The quality of fit is generally quite good for values 

of 𝑉 around 2.

For 1.2 < 𝑉 < 2.4, the spot size 𝑤 can be approximated as:

Τ𝑤 𝑎 ≈ 0.65𝑉 + 1.619𝑉− Τ3 2 + 2.879𝑉−6

49

47

48



EFFECTIVE CORE AREA

The effective core area, defined as 𝐴eff = 𝜋𝑤2, is an important parameter for optical 

fibers as it determines how tightly light is confined in the core.

The fraction of the power confined in the core is given by the confinement factor:

Γ =
𝑃core

𝑃total
=

0׬

𝑎
𝐸𝑥

2𝜌 d𝜌

0׬

∞
𝐸𝑥

2𝜌 d𝜌
= 1 − exp −

2𝑎2

𝑤2

▪ For 𝑽 = 𝟐, 75% of the power is confined in the core.

▪ For 𝑽 = 𝟏, 20% of the power is confined in the core.

▪ As a result, most telecommunication single-mode fibers are designed to operate in 

the range 2 < 𝑉 < 2.4.
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SPOT SIZE

Figure 7: (a) Normalized spot size 𝑤/𝑎 as a function of the 𝑉 parameter obtained by 

fitting the fundamental fiber mode to a Gaussian distribution. (b) quality of fit for 𝑉
= 2.4 [3].
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FIBER BIREFRINGENCE

The degenerate nature of the orthogonally polarized modes holds only for an ideal 

single-mode fiber with a perfectly cylindrical core of uniform diameter. Real fibers 

exhibit considerable variation in the shape of their core along the fiber length. They 

may also experience nonuniform stress such that the cylindrical symmetry of the 

fiber is broken. Degeneracy between the orthogonally polarized fiber modes is 

removed because of these factors, and the fiber acquires birefringence. The degree 

of modal birefringence is defined by:

𝐵𝑚 = ෤𝑛𝑥 − ෤𝑛𝑦

where ෤𝑛𝑥 and ෤𝑛𝑦 are the mode indices for the orthogonally polarized fiber modes. 

Birefringence leads to a periodic power exchange between the two polarization 

components. The period, referred to as the beat length, is given by:

𝐿𝐵 = 𝜆/𝐵𝑚
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STATE OF POLARIZATION IN A 
BIREFRINGENT FIBER

Figure 8: State of polarization in a birefringent fiber over one beat length. Input 

beam is linearly polarized at 45⁰ with respect to the slow and fast axes.
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STATE OF POLARIZATION IN A 
BIREFRINGENT FIBER
▪ Linearly polarized light remains linearly polarized only when it is polarized along one 

of the principal axes. Otherwise, its state of polarization changes along the fiber length 

from linear to elliptical, and then back to linear, in a periodic manner over the length 𝐿𝐵. 

Figure 8 shows schematically such a periodic change for a fiber of constant 

birefringence 𝐵.

▪ The fast axis in the Figure corresponds to the axis along which the mode index is 

smaller. The other axis is called the slow axis.

▪ In conventional single-mode fibers, birefringence is not constant along the fiber but 

changes randomly, both in magnitude and direction, because of variations in the core 

shape (elliptical rather than circular) and the anisotropic stress acting on the core. As a 

result, light launched into the fiber with linear polarization quickly reaches a state of 

arbitrary polarization. Moreover, different frequency components of a pulse acquire 

different polarization states, resulting in pulse broadening.
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STATE OF POLARIZATION IN A 
BIREFRINGENT FIBER
This phenomenon is called polarization-mode dispersion (PMD) and becomes a 

limiting factor for optical communication systems operating at high bit rates.

Figure 9: polarization-mode dispersion (PMD) in optical fiber.
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POLARIZATION-MAINTAINING FIBER

It is possible to make fibers for which random fluctuations in the core shape and size 

are not the governing factor in determining the state of polarization. Such fibers are 

called polarization-maintaining fibers. A large amount of birefringence is introduced 

intentionally in these fibers through design modifications so that small random 

birefringence fluctuations do not affect the light polarization significantly. Typically, 

𝐵𝑚 ≈ 10−4 for such fibers.

Figure 10: polarization-maintaining "Panda" and "Bow-Tie" fiber [from Thorlabs].
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POLARIZING FIBER

It is also possible to make a polarizing fiber. In this fiber, two rods apply stress on the 

core, create a slow and a fast axis. The field in the slow axis has low attenuation while 

the field in the fast axis has high attenuation. Therefore, only the field in the slow axis 

will propagate without losses. This fiber has a narrow wavelength band (~150 nm).

Figure 11: (a) cross-section and (b) transmission of a polarizing fiber [from 

Thorlabs].
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THE AVERAGE OPTICAL POWER

Under general conditions, the changes in the average optical power 𝑃 of a bit stream 

propagating inside an optical fiber are governed by Beer's law:
𝜕𝑃

𝜕𝑧
= −𝛼𝑃

where 𝛼 is the attenuation coefficient.

Although denoted by the same symbol as the absorption coefficient, 𝛼 in the Eq. (52) 

includes not only material absorption but also other sources of power attenuation. If 

𝑃in is the power launched at the input of a fiber of length 𝐿, the output power 𝑃out 

from Eq. (52) is given by:

𝑃out = 𝑃in exp −𝛼𝐿

58

52

53



ATTENUATION COEFFICIENT

The average optical power can be simply expressed as:

𝑃 𝑧 = 𝑃0exp(−𝛼𝑧)

where 𝑃0 is the input optical power. 

This attenuation coefficient 𝛼 of an optical fiber can be obtained by measuring the 

input and the output optical power:

𝛼 = −
1

𝐿
ln

𝑃(𝐿)

𝑃0

where 𝐿 is the fiber length and 𝑃(𝐿) is the optical power measured at the output of 

the fiber.
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ATTENUATION COEFFICIENT

However, engineers like use decibel (dB) to describe fiber attenuation and use 

dB/km as the unit of attenuation coefficient. If we define dB as the attenuation 

coefficient which has the unit of dB/km, then the optical power level along the fiber 

length can be expressed as:

𝑃 𝑧 = 𝑃0 ∙ 10−
𝛼(dB/km)

10 𝑧

Similar to Eq. (56), for a fiber of length 𝐿, dB/km can be estimated using

𝛼 ΤdB km = −
10

𝐿
log

𝑃(𝐿)

𝑃0
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ATTENUATION COEFFICIENT

Comparing Equations (55) and (57) the relationship between 𝛼 ΤdB km  and 𝛼 can be 

found as:

𝛼 ΤdB km

𝛼
=

10 log
𝑃(𝐿)

𝑃0

ln
𝑃(𝐿)

𝑃0

= 10 log 𝑒 = 4.343

or simply, 𝛼 ΤdB km = 4.343𝛼.

dB is a simpler parameter to use for evaluation of fiber loss. For example, for an 80 

km long fiber with 𝛼 = 0.25 ΤdB km attenuation coefficient, the total fiber loss can be 

easily found as 20 dB.
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OPTICAL FIBER ATTENUATION

▪ Attenuation is a parameter of an optical 

fiber which determines how far an 

optical signal can be delivered at a 

detectable power level. 

▪ There are several sources that 

contribute to fiber attenuation, such as 

absorption and scattering.

62

Figure 12: The loss spectrum 𝛼(𝜆) of a single-

mode fiber made in 1979 with 9.4 µm core 

diameter and Δ = 1.9 ∙ 10−3 [3].



OPTICAL FIBER ATTENUATION

▪ The fiber exhibited a loss of about 0.2 dB/km in the wavelength region near 1.55 

µm, the lowest value first realized in 1979. This value is close to the fundamental 

limit of about 0.16 dB/km for silica fibers.

▪ The loss spectrum exhibits a strong peak near 1.39 µm and several other smaller 

peaks.

▪ A secondary minimum is found to occur near 1.3 µm, where the fiber loss is below 

0.5 dB/km. Since fiber dispersion is also minimum near 1.3 µm, this low-loss 

window was used for second-generation lightwave systems.
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OPTICAL FIBER ATTENUATION

Fiber losses are considerably higher 

for shorter wavelengths and exceed 5 

dB/km in the visible region, making it 

unsuitable for long-haul transmission. 

Several factors contribute to overall 

losses; their relative contributions are 

also shown in the figure. The two most 

important among them are material 

absorption and Rayleigh scattering.
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Figure 13: Attenuation of old (brown line) and new 

(blue line) silica fibers. The shaded regions indicate 

the three telecommunication wavelength windows.



OPTICAL FIBER ATTENUATION

▪ The brown line shows the attenuation of old fibers that were made before the 
1980s. In addition to strong water absorption peaks, the attenuation is generally 
higher than new fibers due to material impurity and waveguide scattering.

▪ Three wavelength windows, where optical attenuation has local minimums, have 
been used since the 1970s for optical communications in 850 nm, 1310 nm, and 
1550 nm. 

▪ In the early days of optical communication, the first wavelength window in 850 nm 
was used partly because of the availability of GaAs-based laser sources, which 
emit in that wavelength window. 

▪ The advances in longer wavelength semiconductor lasers based on InGaAs and 
InGaAsP pushed optical communications toward the second and the third 
wavelength windows in 1310 nm and 1550 nm where optical losses are significantly 
reduced and optical systems can reach longer distances without regeneration.
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MATERIAL ABSORPTION

Material absorption can be divided into two categories:

1) Intrinsic absorption which correspond to absorption by fused silica (material 
used to make fibers).

2) Extrinsic absorption which is related to losses caused by impurities within silica.

Any material absorbs at certain wavelengths corresponding to the electronic and 
vibrational resonances associated with specific molecules. For silica (SiO2) 
molecules, electronic resonances occur in the ultraviolet region ( λ < 0.4 μm ), 
whereas vibrational resonances occur in the infrared region (λ > 7 μm). Because of 
the amorphous nature of fused silica, these resonances are in the form of absorption 
bands whose tails extend into the visible region.

Figure 12 shows that intrinsic material absorption for silica is less than 0.03 dB/km in 
the 1.3-1.6 µm wavelength window commonly used for lightwave systems.
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MATERIAL ABSORPTION

Transition-metal impurities such as Fe, Cu, Co, Ni, Mn, and Cr absorb strongly in the 

wavelength range 0.6-1.6 µm. Their amount should be reduced to below 1 part per 

billion to obtain a loss level below 1 dB/km. Such high-purity silica can be obtained 

by using modern techniques.

67

▪ The main source of extrinsic absorption in state-of-
the-art silica fibers is the presence of water vapors.

▪ OH ion harmonic and combination tones with silica 
produce absorption at the 1.39, 1.24, and 0.95 µm 
wavelengths.

▪ Even a concentration of 1 part per million can cause 
a loss of about 50 dB/km at 1.39 µm.

▪ The OH ion concentration is reduced to below 10-8 in 
modern fibers to lower the 1.39 µm peak below 1 dB.



MATERIAL ABSORPTION

▪ In a new kind of fiber, known as the dry 

fiber, the OH ion concentration is reduced to 

such low levels that the 1.39 µm peak almost 

disappears.

▪ Figure 14 shows the loss and dispersion of 

such a fiber (marketed under the trade 

name AllWave).

▪ Such fibers can be used to transmit 

wavelength division multiplexing (WDM) 

signals over the entire 1.30-1.65 µm 

wavelength range.
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Figure 14: Loss and dispersion of the 

AllWave fiber. Loss of a conventional fiber 

is shown by the gray line for comparison 

[Courtesy Lucent Technologies].



FIBER REFLECTION AND SCATTERING

Figure 15: Illustrations of (a) fiber back-reflection and (b) scattering in fiber core.
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BACK-REFLECTION

▪ When light exits the fiber some of the power is back-reflected from the end-

surface of the fiber into the fiber core. In some devices the back reflection from the 

fiber end-surface can harm the device.

What can be done to reduce the Fresnel reflection back to the device?

▪ The end-surface of a fiber connector can be angle-cleaved to the fiber axis (angles 

of 5-15⁰). This is usually referred to as APC (angle-polished connector). The light 

will back-reflected into the cladding and not back to the core.
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BACK-REFLECTION

If the fiber has the core index 𝑛1 = 1.47 and cladding index 𝑛2 = 1.467 what is the 

minimum angle 𝜑 such that the Fresnel reflection by the fiber end-facet will not 

become the guided fiber mode?

▪ The angle has to be designed such that after reflection at the fiber end-surface, all 

these three light beams will not be coupled into fiber-guided mode in the 

backward propagation direction 𝜃 = Τ𝜋 2 − 2𝜑 < 𝜃𝑐. For the reflected light beam 

not to become the guided mode of the fiber, 𝜃 < 𝜃𝑐 is required, where 𝜃𝑐 is the 

critical angle.

▪ Therefore, the (a) requirement for 𝜑 is 𝜑 > Τ𝜋 4 − Τ𝜃𝑐 2. (b) The beam has an angle 

𝜃1 with respect to the surface normal of the fiber end-surface, which is related to 𝜑 

by 𝜃1 = Τ𝜋 2 − 𝜃𝑐 + 𝜑.
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ANGLE POLISHED FIBER

Figure 16: Illustration of an angle-polished fiber surface.
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RAYLEIGH SCATTERING

▪ Rayleigh scattering is an elastic scattering of 

light a by particles with a size much smaller 

than the wavelength of the radiation.

▪ It is inversely proportional to the wavelength. 

A blue light is scattered much more than a red 

light as light propagates through air.

▪ Rayleigh scattering of sunlight in Earth's 

atmosphere causes diffuse sky radiation, 

which is the reason for the blue color of the 

daytime and twilight sky, as well as the 

yellowish to reddish hue of the low Sun.
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RAYLEIGH SCATTERING

▪ Silica molecules move randomly in the molten state and freeze in place during 

fiber fabrication. Density fluctuations lead to random fluctuations of the refractive 

index on a scale smaller than the optical wavelength 𝜆. 

▪ Light scattering in such a medium is known as Rayleigh scattering. The scattering 

cross section varies as 𝜆−4. As a result, the intrinsic loss of silica fibers from 

Rayleigh scattering can be written as:

𝛼𝑅 = 𝐶/𝜆4

where the constant 𝐶  is in the range 0.7-0.9 (dB/km)µm4, depending on the 

constituents of the fiber core. These values of 𝐶 correspond to 𝛼𝑅 = 0.12 − 0.16 dB
/km at 𝜆 = 1.55 μm, indicating that fiber loss in Fig. 13 describing loss is dominated 

by Rayleigh scattering near this wavelength.
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RAYLEIGH SCATTERING

The contribution of Rayleigh scattering can be reduced to below 0.01 dB/km for 

wavelengths longer than 3 µm.

▪ Silica fibers cannot be used in this wavelength region, since infrared absorption 

begins to dominate the fiber loss beyond 1.6 µm.

▪ Fluorozirconate (ZrF4) fibers have an intrinsic material absorption of about 0.01 

dB/km near 2.55 µm and have the potential for exhibiting loss much smaller than 

that of silica fibers. However, State-of-the-art fluoride fibers exhibit a loss of about 1 

dB/km because of extrinsic losses.

▪ Chalcogenide and polycrystalline fibers exhibit minimum loss in the far-infrared 

region near 10 µm. The theoretically predicted minimum value of fiber loss for such 

fibers is below 10-3 dB/km because of reduced Rayleigh scattering. However, 

practical loss levels remain higher than those of silica fibers.
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WAVEGUIDE IMPERFECTIONS - CORE-
CLADDING INTERFACE
▪ An ideal single-mode fiber with a perfect cylindrical geometry guides the optical 

mode without energy leakage into the cladding layer. In practice, imperfections at 

the core-cladding interface (e.g., random core-radius variations) can lead to 

additional losses which contribute to the net fiber loss. The physical process 

behind such losses is Mie scattering, occurring because of index inhomogeneities 

on a scale longer than the optical wavelength.

▪ Care is generally taken to ensure that the core radius does not vary significantly 

along the fiber length during manufacture. Such variations can be kept below 1%, 

and the resulting scattering loss is typically below 0.03 dB/km.
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WAVEGUIDE IMPERFECTIONS - BENDS

Bends in the fiber constitute another source of scattering loss. Normally, a guided ray 

hits the core-cladding interface at an angle greater than the critical angle to 

experience total internal reflection. However, the angle decreases near a bend and 

may become smaller than the critical angle for tight bends. The ray would then 

escape out of the fiber.
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING
𝛽𝑧 - the propagation constant.

𝛽0 - the propagation constant of 

unguided light in medium 𝑛1.

𝑅 - the radius curvature.
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING
For mode to exist, the angular velocity 

needs to be equal to preserve a wavefront. 

Therefore, the tangential phase velocity of 

the wave needs to be proportional to the 

distance from the center of the waveguide.

𝑣 = 𝑟
𝑑𝜃

𝑑𝑡
= 𝑥

𝑑𝜃

𝑑𝑡
= 𝑥

𝜔

𝛽𝑥
=

𝜔

𝛽

The maximal velocity in 𝑛1 is  

𝑣1 =
𝑐

𝑛1
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING
For a certain distance 𝑋𝑚 the velocity needs to be bigger than 𝑣1 which is not 

physical. The photons will radiate into medium 𝑛1.

𝑋𝑚 = 𝑅 + 𝑋𝑟

In the center of the guiding layer (𝑛2):

𝑣 =
𝜔

𝛽𝑧
= 𝑅

𝑑𝜃

𝑑𝑡

𝑑𝜃

𝑑𝑡
=

𝜔

𝑅𝛽𝑧

In medium 1 (𝑛1):

𝑑𝜃

𝑑𝑡
=

𝜔

𝑅 + 𝑋𝑟

𝑋𝑚

𝛽0

80

62

61



WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING
To preserve the wavefront, the angular velocities need to be equal.

𝜔

𝑅𝛽𝑧
=

𝜔

(𝑅 + 𝑋𝑟)𝛽0
 ⇒  𝑅𝛽𝑧 = (𝑅 + 𝑋𝑟)𝛽0

𝑋𝑚 =
𝛽𝑧

𝛽0
𝑅 𝑋𝑟 =

𝛽𝑧 − 𝛽0

𝛽0
𝑅

Till 𝑋𝑚, the wavefront is preserved.

Since 𝛽𝑖 = 𝛽air𝑛𝑖,  we get:

𝑋𝑚 =
𝑛2

𝑛1
𝑅 𝑋𝑟 =

∆𝑛

𝑛1
𝑅

For 𝑥 > 𝑋𝑚 the radiation is slower while disappearing after the distance of 𝑍𝑐.
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

𝑑𝑃 𝑧

𝑑𝑧
= −𝛼𝑃 𝑧  ⇒  

𝑃loss

𝑍𝑐
= 𝛼𝑃total

where 𝑃loss is the power in the tail of the mode beyond 𝑋𝑟 (the power lost by 

radiation within a length 𝑍𝑐) and 𝑃total is the total power.

𝑍𝑐  can be calculated by analogy to the emission of photons from an abruptly 

terminated waveguide. It is the distance for which the light emitted into a medium 

from an abruptly terminated waveguide remains collimated.

𝑍𝑐 =
𝑎

𝜑
=

𝑎2

2𝜆1

when 𝜆1 =
𝜆0

𝑛1
, 𝑎 is the near-field beam width and 𝜑 is the far-field angle
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

𝛼𝑅 =
𝑃loss

𝑃total
=

𝑋𝑟׬

∞
𝐸2 𝑥 𝑑𝑥

∞−׬

∞
𝐸2 𝑥 𝑑𝑥

∙
1

𝑍𝑐

Substitute 𝐸 of the modes in the different regions:

1) Inside the waveguide:

2) Outside the waveguide:
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𝐸 𝑥 = 𝐶0 cos ℎ𝑥 , −
𝑎

2
≤ 𝑥 ≤

𝑎

2

𝐸 𝑥 = 𝐶0 cos
ℎ𝑎

2
exp −

𝑥 − 𝑎/2

𝑞
, −

𝑎

2
≤ 𝑥 ≤

𝑎

2



WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

𝑃loss = න
𝑋𝑟

∞

𝐸2 𝑥 𝑑𝑥 = 𝐶0

𝑞

2
cos2

ℎ𝑎

2
exp −

2

𝑞
𝑋𝑟 −

𝑎

2

and

𝑃total = න
−∞

∞

𝐸2 𝑥 𝑑𝑥 = 𝐶0

𝑎

2
+

1

2ℎ
sin ℎ𝑥 + 𝑞 cos2

ℎ𝑎

2

𝛼𝑅 =
𝑃loss

𝑃total
∙

1

𝑍𝑐
=

𝑞
2

cos2 ℎ𝑎
2

exp −
2
𝑞

𝛽𝑧 − 𝛽0
𝛽0

𝐶2

𝑅 2𝜆1 exp
𝑎
𝑞

𝑎
2

+
1

2ℎ
sin ℎ𝑥 + 𝑞 cos2 ℎ𝑎

2
𝑎2

𝛼𝑅 = 𝐶1 ∙ exp −𝐶2𝑅
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

𝛼𝑅 = 𝐶1 ∙ exp −𝐶2𝑅

where 𝐶1 and 𝐶2 are constants that depend on the dimensions of the waveguide and 
on the shape of the mode.

To conclude:
𝛼 = 𝛼𝑎𝑏𝑠 + 𝛼𝐹𝑅 + 𝛼𝑅
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING
In the mode description, a part of the mode energy is scattered into the cladding 

layer.

𝛼bend ∝ exp −𝑅/𝑅𝑐

where 𝑅 is the radius of curvature of the fiber bend and 𝑅𝑐 = Τ𝑎 𝑛1
2 − 𝑛2

2 .

For single-mode fibers, 𝑅𝑐 = 0.2 − 0.4 μm  typically, and the bending loss is 

negligible (<0.01 dB/km) for bend radius 𝑅 > 5 mm. Since most macroscopic bends 

exceed 𝑅 = 5 mm, macro-bending losses are negligible in practice.
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WAVEGUIDE IMPERFECTIONS - MICRO-
BENDING
▪ A major source of fiber loss, particularly in 

cable form, is related to the random axial 

distortions that invariably occur during 

cabling when the fiber is pressed against a 

surface that is not perfectly smooth. 

▪ Such losses are referred to as micro-

bending losses and have been studied 

extensively. Microbends cause an increase 

in the fiber loss for both multimode and 

single-mode fibers and can result in an 

excessively large loss (~100 dB/km) if 

precautions are not taken to minimize them.
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Figure 17: Illustration of micro-bending 

loss.



WAVEGUIDE IMPERFECTIONS - MICRO-
BENDING
▪ For single-mode fibers, micro-bending 

losses can be minimized by choosing the 
V parameter as close to the cutoff value of 
2.405 as possible so that mode energy is 
confined primarily to the core. 

▪ In practice, the fiber is designed to have 𝑉 
in the range 2.0-2.4 at the operating 
wavelength. 

▪ Many other sources of optical loss exist in 
a fiber cable. These are related to splices 
and connectors used in forming the fiber 
link and are often treated as a part of the 
cable loss; microbending losses can also 
be included in the total cable loss.
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Figure 17: Illustration of micro-bending 

loss.
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