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= Mode analysis with EM theory
= Wave propagation

= Single-mode fibers

= Birefringence

= Losses




MAXWELL'S EQUATIONS

Like all electromagnetic phenomena, propagation of optical fields in fibers is
governed by Maxwell's equations. For a nonconducting medium without free
charges:

, =_ 0B (1)
Faraday’s law VXE =
ot
z_ 0D 2)
Ampere-Maxwell law VX H= 3
Gauss law V-D=0 (3)
Gauss's law for magnetism V- § — (4)

where E is the electric field vector, D is the electric displacement field vector, H is
the magnetic field vector and B is the magnetic flux density vector.
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MAXWELL'S EQUATIONY

= D and B are related to the field vectors and are defined as

—

D - goﬁ +13) (5)

where ¢, and pu, are the electric permittivity and magnetic permeability of vacuum,
respectively, P is the polarization and M is the magnetization.

= For optical fibers M = 0 because of the nonmagnetic nature of silica glass.

= Evaluation of the electric polarization P requires a microscopic quantum-
mechanical approach.
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MAXWELL'S EQUATIONY

Although such an approach is essential when the optical frequency is near a medium
resonance, a phenomenological relation between P and E can be used far from
medium resonances.

This is the case for optical fibers in the wavelength region 0.5-2 ym, a range that
covers the low loss region of optical fibers that is of interest for fiber-optic
communication systems.

In general, the relation between P and E can be nonlinear. Here, in discussion of
fiber modes, the nonlinear effects in optical fibers will be ignored.




RELATION BETWEEN ELECTRIC POLARIZATION P
AND ELECTRIC FIELD VECTOR E' - GENERAL CASE

The polarization of the material is defined as
P = ¢y xE (7)

where y is the susceptibility which is a measure of the polarizability of the material.
P=¢o(yVE+ yPEE + y®EEE + - ) =P, + PP + P + ... (8)

where yV is the linear susceptibility and y® and y‘® in the second and third order
nonlinear susceptibility. Y is a tensor of j + 1 rank.




RELATION BETWEEN ELECTRIC POLARIZATION P
AND ELECTRIC FIELD VECTOR E' - GENERAL CASE

= If the intensity of the applied field is small P(t) P EQ) o)
the response is linear, as shown in (a). @ /’\ /\ /\ j\ /\ !
t
= If the intensities are increased, the . \/(1)\/ (\34 \/ U l
response of the material will become - PO~ EO+CTEOEOED I
nonlinear (symmetric material - (b)). ) /\ /\ /\ /\ /\ }
t

= If no symmetry center is present in the

~ (D)4, ) pS P
crystal, the symmetry rule no longer holds = HOEbne EORO ‘A(m)" 3%
and it follows a potential energy function /\ /\ /\ /\ /\

according to (c). | |
o, 20,30, ©

Figure 1: Potential energy function for
linear and nonlinear media and the

corresponding Fourier transforms [1]. @



RELATION BETWEEN ELECTRIC POLARIZATION P
AND ELECTRIC FIELD VECTOR E' - GENERAL CASE

The linear susceptibility ¥V is a tensor, consisting of 3! x 3 elements.

Po(@)] | @ X2 (@) x5 @] [E, ()
PLy(@)| = & | xS0 (@) x5 (@) 155 (@) |[Ey(@)
Pz (w) ) X;;lc)(w) X;Jl/)(w) X}(é)(w) E,(w)

It can be expressed as a summation over the distinct components as well

PLu(@) = & ) 2P (@)E () ©)
J

where (,j = x,y, z.




RELATION BETWEEN ELECTRIC POLARIZATION P
AND ELECTRIC FIELD VECTOR E' - GENERAL CASE

The second order nonlinear susceptibility y(? consists of 32 x 3 elements and is a tensor of third rank.

Py (w)
PLy (w)
PLZ(('U)

22 (@) 1E () -
12 (@) 12 (@) -

22w (@) -

14 ()]
X5 (@)

12 (w)]

_Ex(wl)
Ex(wl)
Ex(wl)
Ey(wl)
Ey(wl)
Ey(wl)
Ez(wl)

Ez(wl)
-Ez(wl)

It can be expressed as a summation over the distinct components as well

P = w1+ w3) = £ ) 31, 0B () Fi(wy) (10)
ik

where i,j,k = x,y, z.

Ex(wz)_
Ey(wz)
Ez(wz)
Ex(wZ)
Ey(wz)
Ez(wZ)
Ex(wZ)
Ey(wz)
EZ ((‘)2)-




RELATION BETWEEN ELECTRIC POLARIZATION
P AND ELECTRIC FIELD VECTOR E

Relation between P and E

P(rt) = soj ¥ Pt —tHE(r, t) dt’

where y( is the linear susceptibility which is in general a second-rank tensor but a
scalar for an isotropic medium such as silica glass.

Dimensionless proportionality constant, electric susceptibility y, indicates the
degree of polarization of a dielectric material in response to an applied electric
field. The greater the electric susceptibility y, the greater the ability of a material to
polarize in response to the field, and thereby reduce the total electric field E inside
the material (and store energy). It is in this way that the electric susceptibility y
influences the electric permittivity ¢ of the material.
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RELATION BETWEEN ELECTRIC POLARIZATION
P AND ELECTRIC FIELD VECTOR E

Note: Optical fibers become slightly birefringent because of unintentional
variations in the core shape or in local strain.

Equation in the previous slide assumes a spatially local response. However, it
includes the delayed nature of the temporal response, a feature that has important
implications for optical fiber communications through chromatic dispersion.
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FREQUENCY-DEPENDENT DIELECTRIC
CONSTANT &,.(r, w)

Taking the curl of Eq. (2), Eq. (5) and Eq. (6), we obtain the wave equation:
VXVXE = —li—u a2p
c2 9tz 0 9e2
where ¢ = \/gyly. By introducing the Fourier transform:

E(r,w) =f E(# t)elot dt (12)

(11)

as well as a similar relation for P(7 t), and by using Eq. (11) can be written in the

frequency domain as:
2

~ w~ -
VXVXE=—¢.(7 a))C—ZE (13)
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FREQUENCY-DEPENDENT DIELECTRIC
CONSTANT &,.(r, w)

where ¢, is the frequency-dependent dielectric constant which is defined as:
&rw)=1+ i, w)

where ¥ is the Fourier transform of y.

(14)



REFRACTIVE INDEX n AND ABSORPTION
COEEFTICIENT o

In general, ¢,.(r,w) is complex. Its real and imaginary parts are related to the
refractive index n and the absorption coefficient a by the definition:

jac ?
Ep = <n + %> (15)
By using Eqgs. (14) and (15), n and «a are related to j as:
n=.1+%R{) (16)
«=(>)30n) (17)
nc

Both n and a are frequency dependent. The frequency dependence of n is referred
to as chromatic dispersion or simply as material dispersion.
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REFRACTIVE INDEX n AND ABSORPTION
COEEFTICIENT o

Note: Fiber dispersion is shown to limit the performance of fiber-optic
communication systems in a fundamental way.

To solve Eq. (13), two simplifications can be made:

1) The term &, can be taken to be real and replaced by n? because of low optical
losses in silica fibers.

2) Since n(r,w) is independent of the spatial coordinate r in both the core and the
cladding of a step-index fiber, one can use the identity:

VXxVxE=V(V-E)-V2E = -V2E (18)
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REFRACTIVE INDEX n AND ABSORPTION
COEEFTICIENT o

By using Eq. (18) in Eq. (13), we obtain
V2E 4+ n%(w)k,°E = 0

where the free-space wave number k is defined as:
w 21

Ozc_/l

and A is the wavelength in vacuum.

(19)

(20)



FIBER MODES

An optical mode refers to a specific
solution of the wave equation (Eq. (19)) that
satisfies the  appropriate boundary
conditions and has the property that its
spatial distribution does not change with
propagation. The fiber modes can be
classified as guided modes and leaky
guided modes.
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Figure 2: (a) Leaky guided mode. (b) Guided
fiber mode. From [Karabchevsky et al ACS

Photonics 2018] @



FIBER MODES

Note: The signal transmission in fiber-optic communication systems takes place
through the guided modes only. Here, we study the guided modes of a step-index
fiber.

To take advantage of the cylindrical symmetry, Eq. (19) is written in the cylindrical

coordinates p, ¢, and z as:
0°E, 10E, 1 0E, O0°E, :
+——+ + +n%ky"E, =0 (21)
0p? " pap  prog?  azz 07
where for a step-index fiber of core radius a, the refractive index n is of the form:

<
n = {nl’ p=a (22)

Ny, p>a
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FIBER MODES

For simplicity of notation, the tilde over E has been dropped and the frequency
dependence of all variables is implicitly understood. Equation (21) is written for the
axial component E, of the electric field vector.

Similar equations can be written for the other five components of £ and H. However,
it is not necessary to solve all six equations since only two components out of six are
independent. It is customary to choose E, and H, as the independent components
and obtain E,,Ey,H, and Hy in terms of them.
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FIBER MODES

Equation (21) is easily solved by using the method of separation of variables and
writing E, as:

E,(p,¢,z) = F(p)®(Pp)Z(2) (23)
By using Eq. (23) in Eq. (21), we obtain the three ordinary differential equations:

%7
a2 " Bm’Z =0 (24q)
0°®

92F 10F m2

——+———+(n’ko’ = fn’ —— | =0 24c

0p2+pap+<n 0"~ Pm P2 (24c¢)
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FIBER MODES

= Equation (24a) has a solution of the form Z = exp(jf,,z), where [,, is the
propagation constant.

= Similarly, Equation (24b) has a solution ® = exp(jm¢), but the constant m is
restricted to take only integer values since the field must be periodic in ¢ with a
period of 2.

= Equation (24c) is the well-known differential equation satisfied by the Bessel
functions. Its general solution in the core and cladding regions can be written as
under assumption that the diameter of the cladding is infinite:

_VAIm(pp) + AV (pp), p=<a
Flp) = {CKm(qp) +C'In(qp), p>a (23)
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FIBER MODES

where p,,% = ,[)’12 — ,BZ,mz and q,,° = ,Bz,mz — ,[)’22 represent equivalent transversal
propagation constants in the core and cladding, respectively, with ; = n;w/c = n;k,.
f.m 1s the propagation constant in the z-direction.

], and Y, are the first and the second kind of Bessel functions of the m™ order, and
K,, and I, are the first and the second kind of modified Bessel functions of the mt"
order.

Note: two mode indices are the amplitude maxima of the standing wave patterns in
the azimuthal and the radial directions, respectively.

o



BESSEL FUNCTIONS

3 First kind Second kind
m=0 1
m= 1
//
0.5 m:2
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\>&/\
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Figure 3: Bessel function (top) and modified Bessel functions (bottom) [2].
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HW.

Solution of the wave equation:

1) Detail the solution of the wave equation to obtain Z(z).
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FIBER MODES

A, A, C, and C’ are constants that need to be defined using appropriate boundary
conditions:

= First boundary condition - The field amplitude of a guided mode should be finite at
the center of the core p = 0. Since the special function Y,,,(0) = —oo, one must set A’
= 0 to ensure that £,(0) has a finite value.

= Second boundary condition - The field amplitude of a guided mode should be zero
far away from the core (p = ). Since [,,,() # 0, one must set C' = 0 to ensure that
E, () = 0.

Consider A' = C' = 0, the solution of Eq. (21) is:

£ - {Ajm(pp) exp(jme) exp(jz), p<a (26)
“ | Cim(gp) exp(jmep) exp(jBz), p>a

©



FIBER MODES

= Mathematically, K,,,(qg,p) *< exp(—qm,p), for q,p > 0, so that K,,(q,p) represents an
exponential decay of optical field over p in the fiber cladding.

= For a propagation mode, g,,, > 0 is required to ensure that energy does not leak through
the cladding. In the fiber core, the Bessel function J,,(p,,p) oscillates as shown in the
next frame. This represents a standing-wave pattern in the core over the radius
direction.

= For a propagating mode, p,,, = 0 is required to ensure this standing-wave pattern in the
fiber core. Mode index or effective indexn,n, <n <n,,n = f/k,.

Please note that based on the definitions of p,,2 = 1 — Bz and gm? = Brm” — B2, the

requirement of ¢,, > 0 and p,,, = 0 is equivalent to ,822 < ﬁz,mz < ,812 or n,/ny < ,B'Z,mz / f1
< 1. This is indeed equivalent to the mode condition derived by the ray optics. In general,
it may have multiple solutions in descending numerical order denoting by £, ,.
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CHARACTERISTICS OF PROPRGATION
MODES IN THE FIBER

= Transverse electric-field mode (TE mode): E, = 0
= Transverse magnetic-field mode (TM mode): H, = 0
= Hybrid mode (HE,,,, or EH,,,,, mode): E, # 0and H, # 0

= V-number is an important parameter of a fiber, which is defined as:
V= a\/pm2 + qm*

since

2
21N,
pmz = ﬁlz — lgz,m2 = ( 1 > — ,Bz,m2

and

2
21N,
sz = ﬁz,m2 — 1822 = ,Bz,m2 — ( 1 >

(27)

(28)

(29)
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CHARACTERISTICS OF PROPRGATION
MODES IN THE FIBER

V-number can be expressed as:

21a
V= a\/pmz + sz — T\/nlz - nzz (30)
Relation between guided modes m and V-number
VZ
mET

= In a multimode fiber, the number of guided modes can be on the order of several hundreds.

= A short optical pulse is injected into a fiber and the optical energy is carried by many
different modes.

= Different modes have different propagation constants 3, ,, in the longitudinal direction and
they will arrive at the output of the fiber in different times.

= The short optical pulse at the input will become a broad pulse at the output.
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CHARACTERISTICS OF PROPRGATION
MODES IN THE FIBER

= In optical communications systems, this introduces signal waveform distortions and
bandwidth limitations.

To conclude: the single-mode fiber is required in high-speed long distance optical
systems. The lowest-order propagation mode is HE;;, whereas the next lowest modes
are TEy; and TMy;. (m = 0 and n = 1 ; m and n describe the electric field intensity
profile. There are 2m field maxima around the fiber core circumference and n field
maxima along the fiber core radial direction.)
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LINEARLY POLARIZED MODES
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Figure 4: Linearly polarized modes.
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CHARACTERISTICS OF PROPRGATION
MODES IN THE FIBER

TEy; and TM,; have the same cutoff conditions:
= ¢o1 = 0 so that these two modes radiate in the cladding.

= Jo(po1a) = 0 so that the field amplitude at core-cladding interface (p = a) is zero.

Under the first condition (g, = 0), the cutoff Vonumber V = a./py12 + qo12 = alUy;.

Under the second condition, we can find J,(py;a) = Jo(V) = 0, which implies that V
= 2.405 as the first root of J,(V) = 0.

Therefore, the single-mode condition is:
21a
V= T\/nlz —n,2 < 2.405 (31)
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FIBER MODES

Solutions of the wave equation

B (orb.2) | m(PmP) expGmP) expiBsm?)
zm\P P, 2) = kCl(m(qmp) exp(jme) exp(jBzm2),

[ BJ (Dp) exp(jme) exp(jBy,m2),
(DK (qmp) exp(jm) exp(jBzm2),

Hym (0, $,2) =

o



HW.

Solution of the wave equation:

1)
2)

Express the radial components £, and H,,.

Express the angular components Ey and H.
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MODES

FIBER

The other four components E,, Ey, H, and Hy, can be expressed in terms of £, and H,

by using Maxwell's equations. In the core region, we obtain:
Ji 0E, wdH,
Ep ==|p + Uo—

p*\ 0p p 0¢
- j(ﬁmz mu)
= —| — — UgW
Pp2\padp T ap
Ji 0H, w JE,
H, = — gon’—
P p? (ﬁ ap " p 64))
j (BoH, , aEZ)
H — + Egnw —
? 7 p2 <p op  ° " dp

These equations can be used in the cladding region after replacing p? by —qg*.

(34)

(35)

(36)

(37)
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FIBER MODES

Equations (43)-(48) express the electromagnetic field in the core and cladding
regions of an optical fiber in terms of four constants A, B, C,and D.

These constants are determined by applying the boundary condition that the
tangential components of £ and H be continuous across the core-cladding interface.

By requiring the continuity of E,, H,, E4 and Hy at p = a, we obtain a set of four

homogeneous equations satisfied by A, B, C, and D. These equations have a nontrivial
solution only if the determinant of the coefficient matrix vanishes.

©



FIBER MODES

After considerable algebraic details, this condition leads to the following eigenvalue
equation:

Jm(a)  Kp(qa) |[Jm(a) np* Kp(ga)] m* (1 1\[/1 n,*1
R | ek =Gl ) () o

= + +
plmn(pa)  pKm(qa)||p/m(pa)  ni?pKin(qa)] a? \p? q?)\p*? mni?q?
where a prime indicates differentiation with respect to the argument.

= For a given set of the parameters kg, a, ny, n, the eigenvalue Eq. (38) can be solved
numerically to determine the propagation constant £.

= In general, Equation (38) may have multiple solutions for each integer value of m.

= These solutions can be enumerated in ascending numerical order and denoted by 5,
for a given m (n = 1,2,...). Each value mn corresponds to one possible propagation
mode of the optical field whose spatial distribution is obtained from Eqs. (32)-(37).
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FIBER MODES

Since the field distribution does not change with propagation except for a phase
factor and satisfies all boundary conditions, it is an optical mode of the fiber.

In general, both E, and H, are nonzero (except for m = 0) in contrast with the planar
waveguides, for which one of them can be taken to be zero. Therefore, fiber modes
are referred to as hybrid modes and are denoted by HE,,,, or EH,,,, depending on
whether H, or E, dominates.

In the special case m =0, HE,,, and EH,, are also denoted by TE,, and TM,,
respectively, since they correspond to transverse-electric (E, = 0) and transverse-
magnetic (H, = 0) modes of propagation.

(=)



FIBER MODES

= A mode is uniquely determined by its propagation constant £.

= It is useful to introduce a quantity n = [ /k,, called the mode index or effective
index.

= Mode propagates with an effective refractive index n whose value lies in the range
ny > n > n,.

= A mode ceases to be guided when n < n,. This can be understood by noting that
the optical field of guided modes decays exponentially inside the cladding layer
since:

T

1/2
Kn(qp) = (%) exp(—qp), qp»>1 (39)

When 71 < n,, g% < 0 and the exponential decay does not occur. The mode is said to
reach cutoff when q becomes zero or when it = n,.p = ky/n,2 — n,2 when q = 0.
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HW.

Cutoff:

Explain the cutoff condition of the guiding in optical fibers in terms of the optical
fields.
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GUIDED MODES

A parameter that plays an important role in determining the cutoff condition is
defined as:

V =koayn 2 —n,2 = (—) an,V2A (40)

which is the normalized frequency VV < w or simply the V-number.

It is also useful to introduce a normalized propagation constant b as:

h = — (41)
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GUIDED MODES

= The figure in the next slide shows a plot of b as a function of V for a few low-order
fiber modes obtained by solving the eigenvalue equation (Eqg. (38)).

= A fiber with a large value of I/ supports many modes. A rough estimate of the
number of modes for such a multimode fiber is given by V?/2. For example, a
typical multimode fiber with a = 25 um and A=5-10"3 has V ~ 18 at 1 = 1.3 um
and would support about 162 modes. However, V = 5 supports 7 modes.

= Below a certain value of IV all modes except the HE;; mode reach cutoff. Such fibers
support a single mode and are called single-mode fibers.
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NORMALIZED PROPAGATION CONSTANT b

1.0 T T T

Single mode

oel-  operation

0.4

Normalized propagation constant &

021

Normalized frequency V

Figure 5: Normalized propagation constant b as a function of normalized frequency I/
for a few low-order fiber modes. The right scale shows the mode index n.g.
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SINGLE-MODE FIBERS

= Single-mode fibers are designed to support only the HE;; mode, also known as the
fundamental mode of the fiber.

= All other modes are cut off at the operating wavelength.

= The V-number determines the number of modes supported by a fiber, as shown in
the Fig. 5. The cutoff condition of various modes is also determined by V.

= The fundamental mode has no cutoff and is always supported by a fiber.
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SINGLE-MODE CONDITION

The single-mode condition is determined by the value of V at which the TE;,; and

TM,; modes reach cutoff. The eigenvalue equations for these two modes can be
obtained by setting m = 0 in Eq. (41) and are given by:

plo(p)K'o(qa) + q/ o (pa)Ky(ga) = 0 (42)

pnz°Jo(pa)K'o(qa) + pny?J o (pa)Ko(qa) = 0 (43)

A mode reaches cutoff when g = 0. Since pa = V when g = 0, the cutoff condition for
both modes is simply given by /,(V) = 0. The smallest value of V for which /,(V) =0
is 2.405. A fiber designed such that V < 2.405 supports only the fundamental HE,
mode. This is the single-mode condition.
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SINGLE-MODE (SM) CONDITION

= Equation (40) can be used to estimate the core radius of the SM fiber used in
Lightwave system.

= For the operating wavelength range 1.3-1.6 ym, the fiber is generally designed to
become single mode for A > 1.2 um. By taking A > 1.2 ym,n; = 1.45and A=5-1073,
Eqg. (40) shows that IV < 2.405 for a core radius a < 3.2 um.

= The required core radius can be increased to about 4 ym by decreasing A to 3
- 1073, Indeed, most telecommunication fibers are designed with a ~ 4 pm.

©



SINGLE-MODE FIBERS

The mode index 7 at the operating wavelength can be defined as:
n=n,+b(n; —n,) = n,(1+ bA) (44)

and by using Fig. 5, which provides b as a function of I for the HE;; mode. An
analytic approximation for b is:

0.996\°
b(V) ~ ( 1.1428 - —— (45)

and is accurate to within 0.2% for I in the range 1.5-2.5.
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LINEARLY POLARIZED (LP)

* The field distribution of the fundamental — -eiie| sl | = | &f..c
mode is obtained by using Egs. (43)-(48). ‘
Hence, the HE;; mode is approximately
linearly polarized for weakly guiding TEn 4
fibers. It is also denoted as LP,, following w
an alternative terminology in which all fiber LPo | Mo @ '.
modes are assumed to be linearly
polarized. - @ ‘. e

= A different notation LP,,, is sometimes used et @ "‘ '
for weakly guiding fibers for which both E, e & &
and H, are nearly zero (LP stands for v @ Q:Q b

linearly polarized modes).
Figure 6: LP modes.
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SINGLE-MODE FIBERS

One of the transverse components can be taken as zero for a linearly polarized mode. If
we set £, = 0, the E,, component of the electric field for the HE;; mode is given by:

f
f Epg] exp(jfz), p<a
E, =E,{ Yo% (46)
Ko(gqp) .
%o (@) exp(jfz), p>0

where E, is a constant related to the power carried by the mode. The dominant
component of the corresponding magnetic field is given by Hy, = n,(ey/ o)/ 2Ey.

This mode is linearly polarized along the x axis. The same fiber supports another mode
linearly polarized along the y axis. In this sense a single-mode fiber actually supports
two orthogonally polarized modes that are degenerate and have the same mode index.




SPOT SIZE

Since the field distribution is cumbersome to use in practice, it is often approximated
by a Gaussian distribution of the form:

Ey = Aexp(—p?/w?) exp(jpz) (47)
where w is the field radius which also named the spot size.

It is determined by fitting the exact distribution to the Gaussian function or by
following a variational procedure. The quality of fit is generally quite good for values
of IV around 2.

For 1.2 <V < 2.4, the spot size w can be approximated as:
w/a =~ 0.65V + 1.619V~3/2 4+ 2.879V~° (48)
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EFFECTIVE CORE AREA

The effective core area, defined as A ¢ = Tw?, is an important parameter for optical
fibers as it determines how tightly light is confined in the core.

The fraction of the power confined in the core is given by the confinement factor:

_ Feore _ anlExlzp dp _ 1-— exp( 2a2>
Piotal fOOO|Ex|2p dp

(49)

= For V = 2,75% of the power is confined in the core.
= For V = 1, 20% of the power is confined in the core.

= As a result, most telecommunication single-mode fibers are designed to operate in
therange 2 <V < 2.4.

@



20 :
V=24
181 16-% eee ACTUAL
i L R coo GAUSSIAN
16 W
o412t
° 1.4 t':f i
= |
1.2 o n
208
10 k- < ot
04}
0.8} I
06 ! 00 | %’
o 1 O 1 2 3 4
p/a

(a) (b)

Figure 7: (a) Normalized spot size w/a as a function of the I/ parameter obtained by
fitting the fundamental fiber mode to a Gaussian distribution. (b) quality of fit for I/

= 2.4 [3].
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FIBER BIREFRINGENCE

The degenerate nature of the orthogonally polarized modes holds only for an ideal
single-mode fiber with a perfectly cylindrical core of uniform diameter. Real fibers
exhibit considerable variation in the shape of their core along the fiber length. They
may also experience nonuniform stress such that the cylindrical symmetry of the
fiber is broken. Degeneracy between the orthogonally polarized fiber modes is
removed because of these factors, and the fiber acquires birefringence. The degree
of modal birefringence is defined by:

B = |ﬁx - ﬁy| (50)

where 7, and 7, are the mode indices for the orthogonally polarized fiber modes.

Birefringence leads to a periodic power exchange between the two polarization
components. The period, referred to as the beat length, is given by:
Lg = 1/Bp, (51)

@



STATE OF POLARIZATION IN A
BIREFRINGENT FIBER

mode
index n
is bigger

Slow

Fast
axis

‘mode_
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is smaller

Figure 8: State of polarization in a birefringent fiber over one beat length. Input
beam is linearly polarized at 45° with respect to the slow and fast axes.
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STATE OF POLARIZATION IN A
BIREFRINGENT FIBER

= Linearly polarized light remains linearly polarized only when it is polarized along one
of the principal axes. Otherwise, its state of polarization changes along the fiber length
from linear to elliptical, and then back to linear, in a periodic manner over the length L.
Figure 8 shows schematically such a periodic change for a fiber of constant
birefringence B.

= The fast axis in the Figure corresponds to the axis along which the mode index is
smaller. The other axis is called the slow axis.

= In conventional single-mode fibers, birefringence is not constant along the fiber but
changes randomly, both in magnitude and direction, because of variations in the core
shape (elliptical rather than circular) and the anisotropic stress acting on the core. As a
result, light launched into the fiber with linear polarization quickly reaches a state of
arbitrary polarization. Moreover, different frequency components of a pulse acquire
different polarization states, resulting in pulse broadening.
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STATE OF POLARIZATION IN A
BIREFRINGENT FIBER

This phenomenon is called polarization-mode dispersion (PIVID) and becomes a
limiting factor for optical communication systems operating at high bit rates.
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Fast mode >
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Slow mode

Figure 9: polarization-mode dispersion (PMD) in optical fiber.
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POLARIZATION-MAINTAINING FIBER

It is possible to make fibers for which random fluctuations in the core shape and size
are not the governing factor in determining the state of polarization. Such fibers are
called polarization-maintaining fibers. A large amount of birefringence is introduced
intentionally in these fibers through design modifications so that small random
birefringence fluctuations do not affect the light polarization significantly. Typically,
B,, =~ 10~* for such fibers.

(@)

Figure 10: polarization-maintaining "Panda" and "Bow-Tie" fiber [from Thorlabs].
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POLARIZING FIBER

It is also possible to make a polarizing fiber. In this fiber, two rods apply stress on the
core, create a slow and a fast axis. The field in the slow axis has low attenuation while
the field in the fast axis has high attenuation. Therefore, only the field in the slow axis

will propagate without losses. This fiber has a narrow wavelength band (~150 nm).
(a) (b)
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Figure 11: (a) cross-section and (b) transmission of a polarizing fiber [from
Thorlabs].
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THE AVERAGE OPTICAL POWER

Under general conditions, the changes in the average optical power P of a bit stream
propagating inside an optical fiber are governed by Beer's law:

0P

— = —qP (52)

0z
where « is the attenuation coefficient.

Although denoted by the same symbol as the absorption coefficient, a in the Eq. (52)
includes not only material absorption but also other sources of power attenuation. If
P;, is the power launched at the input of a fiber of length L, the output power P,
from Eqg. (52) is given by:

Pout = Pin exp(—al) (53)
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ATTENUATION COEFFICIENT

The average optical power can be simply expressed as:
P(z) = Pyexp(—az) (54)

where P, is the input optical power.

This attenuation coefficient a of an optical fiber can be obtained by measuring the
input and the output optical power:

(55)

1 [P(L)

=]
TP,

where L is the fiber length and P(L) is the optical power measured at the output of
the fiber.
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ATTENUATION COEFFICIENT

However, engineers like use decibel (dB) to describe fiber attenuation and use
dB/km as the unit of attenuation coefficient. If we define dB as the attenuation
coefficient which has the unit of dB/km, then the optical power level along the fiber

length can be expressed as:
a(dB/km)
P(z) =P,-10" 10 ~ (56)

Similar to Eq. (56), for a fiber of length L, dB/km can be estimated using

a(dB/km) = —%log [P}()L)
0

(57)
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ATTENUATION COEFFICIENT

Comparing Equations (55) and (57) the relationship between a(dB/km) and a can be

found as:
P(L)

a(dB/km) _ 19 108[
a In [P(L)

= 10log(e) = 4.343 (58)

or simply, a(dB/km) = 4.343a.

dB is a simpler parameter to use for evaluation of fiber loss. For example, for an 80
km long fiber with a = 0.25 dB/km attenuation coefficient, the total fiber loss can be
easily found as 20 dB.
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0PTICAL FIBER ATTENUATION
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Figure 12: The loss spectrum a(A) of a single-
mode fiber made in 1979 with 9.4 ym core
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0PTICAL FIBER ATTENUATION

= The fiber exhibited a loss of about 0.2 dB/km in the wavelength region near 1.55
um, the lowest value first realized in 1979. This value is close to the fundamental
limit of about 0.16 dB/km for silica fibers.

= The loss spectrum exhibits a strong peak near 1.39 ym and several other smaller
peaks.

= A secondary minimum is found to occur near 1.3 ym, where the fiber loss is below
0.5 dB/km. Since fiber dispersion is also minimum near 1.3 pm, this low-loss
window was used for second-generation lightwave systems.
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0PTICAL FIBER ATTENUATION
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Fiber losses are considerably higher
for shorter wavelengths and exceed 5
dB/km in the visible region, making it
unsuitable for long-haul transmission.
Several factors contribute to overall
losses; their relative contributions are
also shown in the figure. The two most
important among them are material
absorption and Rayleigh scattering.

Figure 13: Attenuation of old (brown line) and new
(blue line) silica fibers. The shaded regions indicate

the three telecommunication wavelength windows.

=)



0PTICAL FIBER ATTENUATION

= The brown line shows the attenuation of old fibers that were made before the
1980s. In addition to strong water absorption peaks, the attenuation is generally
higher than new fibers due to material impurity and waveguide scattering.

= Three wavelength windows, where optical attenuation has local minimums, have
been used since the 1970s for optical communications in 850 nm, 1310 nm, and
1550 nm.

= In the early days of optical communication, the first wavelength window in 850 nm
was used partly because of the availability of GaAs-based laser sources, which
emit in that wavelength window.

= The advances in longer wavelength semiconductor lasers based on InGaAs and
InGaAsP pushed optical communications toward the second and the third
wavelength windows in 1310 nm and 1550 nm where optical losses are significantly
reduced and optical systems can reach longer distances without regeneration.
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MATERIAL ABSORPTION

Material absorption can be divided into two categories:

1) Intrinsic absorption which correspond to absorption by fused silica (material
used to make fibers).

2) Extrinsic absorption which is related to losses caused by impurities within silica.

Any material absorbs at certain wavelengths corresponding to the electronic and
vibrational resonances associated with specific molecules. For silica (8i0,)
molecules, electronic resonances occur in the ultraviolet region (A < 0.4 um),
whereas vibrational resonances occur in the infrared region (A > 7 um). Because of
the amorphous nature of fused silica, these resonances are in the form of absorption
bands whose tails extend into the visible region.

Figure 12 shows that intrinsic material absorption for silica is less than 0.03 dB/km in
the 1.3-1.6 ym wavelength window commonly used for lightwave systems.
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MATERIAL ABSORPTION

Transition-metal impurities such as Fe, Cu, Co, Ni, Mn, and Cr absorb strongly in the
wavelength range 0.6-1.6 pm. Their amount should be reduced to below 1 part per
billion to obtain a loss level below 1 dB/km. Such high-purity silica can be obtained

by using modern techniques.

= The main source of extrinsic absorption in state-of-
the-art silica fibers is the presence of water vapors.

= OH ion harmonic and combination tones with silica
produce absorption at the 1.39, 1.24, and 0.95 um
wavelengths.

= Even a concentration of 1 part per million can cause
a loss of about 50 dB/km at 1.39 pym.

= The OH ion concentration is reduced to below 108 in
modern fibers to lower the 1.39 ym peak below 1 dB.
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MATERIAL ABSORPTION

= In a new kind of fiber, known as the dry
fiber, the OH ion concentration is reduced to
such low levels that the 1.39 ym peak almost
disappears.

= Figure 14 shows the loss and dispersion of
such a fiber (marketed under the trade
name AllWave).

= Such fibers can be wused to transmit
wavelength division multiplexing (WDM)
signals over the entire 1.30-1.65 pm
wavelength range.
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Figure 14: Loss and dispersion of the
AllWave fiber. Loss of a conventional fiber
is shown by the gray line for comparison

[Courtesy Lucent Technologies].



FIBER REFLECTION AND SCATTERING

Figure 15: Illustrations of (a) fiber back-reflection and (b) scattering in fiber core.
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BACK-REFLECTION

= When light exits the fiber some of the power is back-reflected from the end-
surface of the fiber into the fiber core. In some devices the back reflection from the
fiber end-surface can harm the device.

What can be done to reduce the Fresnel reflection back to the device?

= The end-surface of a fiber connector can be angle-cleaved to the fiber axis (angles
of 5-15°). This is usually referred to as APC (angle-polished connector). The light
will back-reflected into the cladding and not back to the core.

©



BACK-REFLECTION

If the fiber has the core index n; = 1.47 and cladding index n, = 1.467 what is the
minimum angle ¢ such that the Fresnel reflection by the fiber end-facet will not
become the guided fiber mode?

= The angle has to be designed such that after reflection at the fiber end-surface, all
these three light beams will not be coupled into fiber-guided mode in the
backward propagation direction 8 = /2 — 2¢ < 0.. For the reflected light beam
not to become the guided mode of the fiber, 6 < 0. is required, where 0, is the
critical angle.

= Therefore, the (a) requirement for ¢ is ¢ > n/4 — 6./2. (b) The beam has an angle
0, with respect to the surface normal of the fiber end-surface, which is related to ¢
byb6, =n/2—-6,+ ¢.
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ANGLE POLISHED FIBER

Figure 16: Illustration of an angle-polished fiber surface.



RAYLEIGH SCATTERING

= Rayleigh scattering is an elastic scattering of
light a by particles with a size much smaller
than the wavelength of the radiation.

= It is inversely proportional to the wavelength.
A blue light is scattered much more than a red
light as light propagates through air.

= Rayleigh scattering of sunlight in Earth's
atmosphere causes diffuse sky radiation,
which is the reason for the blue color of the
daytime and twilight sky, as well as the
yellowish to reddish hue of the low Sun.

light
propagation




RAYLEIGH SCATTERING

= Silica molecules move randomly in the molten state and freeze in place during
fiber fabrication. Density fluctuations lead to random fluctuations of the refractive
index on a scale smaller than the optical wavelength A.

= Light scattering in such a medium is known as Rayleigh scattering. The scattering
cross section varies as 1~ %. As a result, the intrinsic loss of silica fibers from

Rayleigh scattering can be written as:
ap = C/A* (59)

where the constant C is in the range 0.7-0.9 (dB/km)um*, depending on the
constituents of the fiber core. These values of ¢ correspond to ap = 0.12 — 0.16 dB
/km at A = 1.55 pm, indicating that fiber loss in Fig. 13 describing loss is dominated
by Rayleigh scattering near this wavelength.
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The contribution of Rayleigh scattering can be reduced to below 0.01 dB/km for
wavelengths longer than 3 ym.

= Silica fibers cannot be used in this wavelength region, since infrared absorption
begins to dominate the fiber loss beyond 1.6 ym.

= Fluorozirconate (ZrF,) fibers have an intrinsic material absorption of about 0.01
dB/km near 2.55 pm and have the potential for exhibiting loss much smaller than
that of silica fibers. However, State-of-the-art fluoride fibers exhibit a loss of about 1
dB/km because of extrinsic losses.

= Chalcogenide and polycrystalline fibers exhibit minimum loss in the far-infrared
region near 10 ym. The theoretically predicted minimum value of fiber loss for such
fibers is below 10 dB/km because of reduced Rayleigh scattering. However,
practical loss levels remain higher than those of silica fibers.
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WAVEGUIDE IMPERFECTIONS - CORE-
CLADDING INTERFACE

= An ideal single-mode fiber with a perfect cylindrical geometry guides the optical
mode without energy leakage into the cladding layer. In practice, imperfections at
the core-cladding interface (e.g., random core-radius variations) can lead to
additional losses which contribute to the net fiber loss. The physical process
behind such losses is Mie scattering, occurring because of index inhomogeneities
on a scale longer than the optical wavelength.

= Care is generally taken to ensure that the core radius does not vary significantly
along the fiber length during manufacture. Such variations can be kept below 1%,
and the resulting scattering loss is typically below 0.03 dB/km.
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WAVEGUIDE IMPERTECTIONS - BENDS

Bends in the fiber constitute another source of scattering loss. Normally, a guided ray
hits the core-cladding interface at an angle greater than the critical angle to
experience total internal reflection. However, the angle decreases near a bend and
may become smaller than the critical angle for tight bends. The ray would then
escape out of the fiber.
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

(3, - the propagation constant.

B, - the propagation constant of
unguided light in medium n;.

R - the radius curvature.




WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

For mode to exist, the angular velocity
needs to be equal to preserve a wavefront.
Therefore, the tangential phase velocity of
the wave needs to be proportional to the
distance from the center of the waveguide.

_dé db  w w 60
VETE T Y a Y g OY
The maximal velocity in n, is
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

For a certain distance X,, the velocity needs to be bigger than v; which is not
physical. The photons will radiate into medium n;.

Xm =R+ X,
In the center of the guiding layer (n,):
W P do
YT Nt
ad ‘o
dt R, (61)
In medium 1 (n,):
ao w
dt ~ (R+X,) B, (62)
Xm
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WAVEGUIDE IMPERFECTIONS - MACRO-

BENDING

To preserve the wavefront, the angular velocities need to be equal.

w
RB, = (R +ﬁXr)ﬁ0 R,BZIB= (};‘l' Xr)Bo
_ Pz _ Pz — Po
gt T g

Till X,,,, the wavefront is preserved.

Since f; = Lairni, We get:
P n, P ¥ An
o ny T ny

For x > X,,, the radiation is slower while disappearing after the distance of Z...

R

(63)
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

dP(Z) Pl
dz =—aP(z) = ZOCSS = APiotal

where P, is the power in the tail of the mode beyond X, (the power lost by
radiation within a length Z,.) and P, 1s the total power.

Z. can be calculated by analogy to the emission of photons from an abruptly
terminated waveguide. It is the distance for which the light emitted into a medium

from an abruptly terminated waveguide remains collimated.
, 9 a?
© P 24

when 1, = i—o, a is the near-field beam width and ¢ is the far-field angle
1
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WAVEGUIDE IMPERFECTIONS - MACRO-

BENDING

Pioss _ Jx, E-(0)dx 1
Ptotal fjooo Ez(x)dx Zc

CZR=

Substitute E of the modes in the different regions:
1) Inside the waveguide:
E(x) = ./Cycos(hx), —

2) Outside the waveguide:

E(x) =./Cycos (%) exp [— <|x| _qa/2>] , _

< x <

N[ &
N Q

< x <

N Q
N Q



WAVEGUIDE IMPERFECTIONS - MACRO-

BENDING

in(hx
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

ap = C; - exp(—C,R) (64)

where (; and (, are constants that depend on the dimensions of the waveguide and
on the shape of the mode.

Index of refraction

Width a C1 C2 R
Case  Waveguide surrounding [nm] [dB/cm] [em™!] for 0= 0.1 dB/cm
1 1.5 1.00 0.198 223 % 10° 347x10* 4.21 pum
2 1.5 1.485 1.04 9.03x 10° 1.46x 10> 0.78 pm
3 1.5 1.4985 1.18 4.69 x 10> 0.814 10.4 cm

To conclude:

a = Qgps + Apgp + Ap
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WAVEGUIDE IMPERFECTIONS - MACRO-
BENDING

In the mode description, a part of the mode energy is scattered into the cladding
layer.
Apend X eXp(—R/R;) (65)

where R is the radius of curvature of the fiber bend and R, = a/(n,? — n,?).

For single-mode fibers, R, =0.2 - 0.4 um typically, and the bending loss is
negligible (<0.01 dB/km) for bend radius R > 5 mm. Since most macroscopic bends
exceed R = 5 mm, macro-bending losses are negligible in practice.




WAVEGUIDE IMPERFECTIONS - MICRO-
BENDING

= A major source of fiber loss, particularly in
cable form, is related to the random axial
distortions that invariably occur during
cabling when the fiber is pressed against a
surface that is not perfectly smooth.

Fiber core Ny

= Such losses are referred to as micro-
bending losses and have been studied
extensively. Microbends cause an increase Figure 17: Illustration of micro-bending
in the fiber loss for both multimode and loss.

single-mode fibers and can result in an

excessively large loss (~100 dB/km) if

precautions are not taken to minimize them.

L+



WAVEGUIDE IMPERFECTIONS - MICRO-

BENDING

= For single-mode fibers, micro-bending
losses can be minimized by choosing the
V parameter as close to the cutoff value of
2.405 as possible so that mode energy is
confined primarily to the core.

= In practice, the fiber is designed to have I/
in the range 2.0-2.4 at the operating
wavelength.

= Many other sources of optical loss exist in
a fiber cable. These are related to splices
and connectors used in forming the fiber
link and are often treated as a part of the
cable loss; microbending losses can also
be included in the total cable loss.

Fiber core Ny

Figure 17: Illustration of micro-bending
loss.
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