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Figure 4.5 The DFT basis vectors for N = 8: (a) real part; (b) imaginary part.
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PARSEVAL THEOREM
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Plancherel theorem: EI
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the sum (or integral) of the square of a function is equal to
the sum (or integral) of the square of its transform
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PARSEVAL THEOREM: PROOF WITH MATRIX
FORMULATION

Matrix formulation: W -0

Proof: P . .
0

A Note: more simple and computationally efficient as compared to sums.




CIRCULAR CONVOLUTION
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Different!

Circular
convolution

®

Linear
convolution

A Note that the linear convolution and circular
convolution produce different results (as can be
observed near the top and bottom of the images).




CIRCULAR CONVOLUTION

AAssume two signals e = and e = and their DFT transforms =
¢ mBh p;Q mMBH p.

A Let define the multiplication in frequency O O[ATOG[Q:Q mBh p

A® "Qhas length of 0. Whatis ® & ?
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this is similar to convolution

but circular one -> due to modulo N @ [a Jo l((é d)) ] @
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A Let assume two segquences of length N= 4: o & ol ot €

A Calculate the circular convolution. Note: for each ¢, the sum below will change

ASolution: @ [¢] ofalo (@7 6) | & nBo
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CIRCULAR CONVOLUTION

N—1

z[n] = {x®y}n] = Z x[m]ly[(m-m)mod N], 0<n=<N-1. (4.51)
m=0
Other names for this operation are cyclic convolution and periodic convolution.
The circular convolution of two length-N sequences is itself a length-N sequence.
It is convenient to think of a circular convolution as though the sequences are defined
on points on a circle, rather than on a line. Take, for example, N = 12, and imagine
the n coordinate as the hour on a watch, with 0 instead of 12. To perform the circular
convolution, proceed as follows:

1. Spread the x[n] clockwise, starting at the zero hour.

2. Spread the y[n] counterclockwise, starting at the zero hour (i.e, the point y[1]
goes on the 11th hour, and so on).

3. To compute z[n], rotate the sequence of y[n]s clockwise by n steps, then perform
element-by-element multiplication of the two sequences, and sum.

4. Repeat for all n from 0 through 11.

Figure 4.9 illustrates this procedure using a 6-digit watch. In this figure we use
x[n] = y[n] = n, so the numbers represent both indices and values of the two se-
quences. The value of n and the corresponding value of z[n] is shown beneath each
nosition of the watch.




CIRCULAR CONVOLUTION

n=73, z[n] =44 n=4, z[n] =35 n=235, z[r] =20

Figure 4.9 Illustration of circular convolution for N = 6. Quter dircles: x[m]; inner circles:
y[n - m]. The result of the convolution is the sum of products of sequence values near the ends
of each dashed line.
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CIRCULAR CONVOLUTION FORMULATION
WITHOUT MODULO

AWe can write the circular convolution without modulo, as linear
convolution of periodic signals:

w [€] wld]w & a




CIRCULAR SHIFT REPRESENTATION AS

LINEAR CONVOLUTION ON PERIODIC SIGNRLS =l =

m=-2
circular shift
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Figure 8.12 Circular shift of a finite-length sequence; i.e., the effect in the time
domain of multiplying the DFT of the sequence by a linear phase factor.



MATRIX REPRESENTATION OF CIRCULAR
CONVOLUTION

AAssume oj€] and we length of 0. The outcome of the circular convolution is
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AEach value of ¢[¢] is the multiplication of ¢f&] with o’o[((é a)) ] circularly shifted.

AWe can represent a4 O
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matrix is a in which In o : . cwcular;tt]
matrices are important because they
all are composed of the L, are by a
same elements and each row vector y
is rotated one element to the right A ,and hence
relative to the preceding row vector. 2 thatt contain them may be

It is a particular kind of quickly solved using a

They can be as the
of a on the C, -
and hence frequently appear in formal descriptions of in T o a circulant
1 spatially invariant linear operations. This property is also matrix is used in
=1 critical in modern software defined radios, which h the step of
o oo utilize to the
spread the (bits) using a . This

enables the channel to be represented by a circulant
matrix, simplifying channel equalization in the e
{ A
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MATRIX REPRESENTATION OF CIRCULAR
CONVOLUTION IN FREQUENCY DOMAIN

AMatrix is named circulant matrix .

Example:
1) Present the matrix relation of in frequency domain and compare it to time domain.
2) Analyze matrix w

Answers: 1) Assume the relation in time domain: a ww

Multiply by DFT matrix 00 "Owt @

IDFT® -'0O®° & —"0w0®O

| =
|-

We define: 0 —"Ow™O what should be matrix 07?




MATRIX REPRESENTATION OF CIRCULAR

CONVOLUTION

A Answer:

From the definition of the circular convolution

frequency domain , we expect to obtain:
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0 is the diagonal matrix via &J'Q on the diagonal and therefore
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which is the multiplication in
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EXAMPLE CONTINUATION

2) We will analyze matrix

We begin with the relation that we &e shown: 6 —-"0w™O
We multiply by O from the left and "Ofrom the right
‘000 UE_O OtooOO Utoo
Fromhere ® -"00"0
N Q L &
We substitute =00 O and ® ((O)AE @o}; 0 H.W. prove

\ direct relation

And 6 AEAC

This is eigen decomposition! \ / 07 454
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AX = AX
EIGEN DECOMPOSITION: REMINDER ’
X
|
o] X J.Ex X
Reminder: wWen _¢n | eigenvalue equation for the matrix @ Matrix A acts by stretching the
= — - — vector x, not changing its
, o~ ~ , ] ; A . di\reg_tion, SO X is an eigenvector
wu LY N - eigenvector dael & O0Yaal Y
L . _deigenvalue deel & aoeé
g) g%g U - eigen matrix Oael é Ul aoaee
’\ —
diagonal

A From the previous developments, IDFT matrix O is matrix of eigenvectors of

w while the eigenvalues are the values of DFT vector & Q.




EIGEN DECOMPOSITION
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A In general, the decomposition 6 U ¥

shows the action of matrix 6 on vector &

0
0  matrix, weight in |, and the transformation

meaning 0 was a first transformation by

back by 0

A This representation decomposes the matrix  w to 3 operations:

1)  Transformation/projection via (_O)

|| <

2)  Weighing with ¥ -multiply each element by & Q, |
3) Transformation back 9 = "0 which is an inverse transform

And so, circular convolution in time is the multiplication of two DFTs in frequency domain ->

-> therefore, eigen decomposition shows the meaning in frequency domain of circular correlation
matrix




LERO PRDDING IN-TIME
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Zero-padded Signal
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Aln in-time zero padding, we add zeros to the (right) end  of
the input sequence.

A Note: adding zeros to the beginning (left) of the input
sequence is different operation: it is shift meaning a change

in phase @




LERO PADDING Matlab: y - (s, zeroscLA-Tengthc01

Assume we length 0. Calculate DFT of length 0 0

x[n], OsnsN‘—l,

Xa[n] = (4.44)
aln] 0, N<n<M-1.
from the right! i -
The operation of adding zeros to the tail of a sequence is called zero padding. The DFT o L
of the zero-padded sequence x,[n] is given by v v
) the tail is zeros A
- 21Tk - i21rkn \DTFT. /.
X3[k] = % xalnlexp (-1 n) =% x(nlexp (250 = (@ ) (4.45)
— M — M —
n=0 n=0
where
O<k<M-1. (4.46)
Zero padding in time improves the resolution in frequency by making the sampling of DTFT denser but does

not add an information o simply the result looks better!
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WHAT IS RESOLUTION?

Aln_common language, the word @esolution 6may
generally be defined as the oaction or process
of separating or reducing something into its
constituent arts 6 (The American Heritage
Dictionary of the English Language).

A History : In optics: the power of a microscope
system to discriminate the constituent parts of an
object down to a certain level of distinction .

AExample 1. The display resolution or display
modes of a digital television, computer monitor
or dlSp|£§_/ device is the number of distinct pixels
In each dimension that can be displayed .

A Example 2:, resolution criteria based on the
Nyquist theorem may be very useful to describe
the power of a microscope approach to analyze
the structure of a completely unknown object.

Super-Resolution Imaging and Optomechanical Manipulation

Using Optical Nanojet for Nondestructive Single -Cell Research,

Karabchevsky et Al
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