Multipole excitations in all-dielectric meta-molecules and in organic molecules

<u>Y. Artemyev</u>^{1,2}, A. Frenklah,³ S. Kozuch,³ A. S. Shalin² and A. Karabchevsky¹

 ¹ Electrooptical Engineering Unit and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University, Israel
² ITMO University, Saint-Petersburg, Russia
³Department of Chemistry, Ben-Gurion University of the Negev, Israel

TMO UNIVERSITY

Electric and magnetic fields described by the scalar and vector potentials

Electric and magnetic fields can be described by scalar and vector potentials:

$$\begin{split} \Phi(\boldsymbol{R},t) &= \frac{1}{4\pi\varepsilon\varepsilon_0} \int_V \frac{\rho\left(\boldsymbol{r},t-\frac{|\boldsymbol{R}-\boldsymbol{r}|}{v}\right)}{|\boldsymbol{R}-\boldsymbol{r}|} dV \\ \boldsymbol{A}(\boldsymbol{R},t) &= \frac{\mu\mu_0}{4\pi} \int_V \frac{\boldsymbol{J}\left(\boldsymbol{r},t-\frac{|\boldsymbol{R}-\boldsymbol{r}|}{v}\right)}{|\boldsymbol{R}-\boldsymbol{r}|} dV \end{split}$$

Expansion of vector potential into Taylor series (scalar potential can be expanded with similar way):

$$\begin{aligned} \boldsymbol{A}(\boldsymbol{R},t) &= \frac{\mu\mu_0}{4\pi} \int_V \frac{\boldsymbol{J}\left(\boldsymbol{r},t-\frac{|\boldsymbol{R}-\boldsymbol{r}|}{v}\right)}{|\boldsymbol{R}-\boldsymbol{r}|} dV = \\ &= \frac{\mu\mu_0}{4\pi R} \left[\int_V \boldsymbol{J} \, dV + \frac{R_i}{vR} \int_V \dot{\boldsymbol{J}} r_i \, dV + \frac{R_j R_k}{2v^2 R^2} \int_V \ddot{\boldsymbol{J}} r_j r_k \, dV + \frac{R_j R_k R_m}{6v^3 R^3} \int_V \ddot{\boldsymbol{J}} r_j r_k r_m \, dV + \dots \right] \end{aligned}$$

Development of amendments to classical multipole decomposition

Consideration of the second term in vector potential leads us to the term of the form:

$$R_j \int_V J_i r_j dV$$

To treat it we will use the following auxiliary expression:

$$\begin{aligned} R_{j} \int_{V} \nabla \left(\boldsymbol{J} \boldsymbol{r}_{i} \boldsymbol{r}_{j} \right) dV &= R_{j} \int_{V} \left(\dot{\rho} \, \boldsymbol{r}_{i} \boldsymbol{r}_{j} + J_{i} R_{j} \boldsymbol{r}_{j} + r_{i} R_{j} J_{j} \right) dV = \\ &= -\dot{Q}_{ij} R_{j} + 2 \int_{V} J_{i} \left(R_{j} \boldsymbol{r}_{j} \right) dV + \int_{V} \underbrace{\left[\boldsymbol{r}_{i} (R_{j} J_{j}) - J_{i} (R_{j} \boldsymbol{r}_{j}) \right]}_{\boldsymbol{b}(\boldsymbol{ac}) - \boldsymbol{c}(\boldsymbol{ab}) = \left[\boldsymbol{a} \times \left[\boldsymbol{b} \times \boldsymbol{c} \right] \right]} dV = \\ &= -\dot{Q}_{ij} R_{j} + 2 \int_{V} J_{i} \left(R_{j} \boldsymbol{r}_{j} \right) dV + \boldsymbol{R} \times \int_{V} \left[\boldsymbol{r} \times \boldsymbol{J} \right] dV \end{aligned}$$

And finally obtain:

$$R_j \int_V J_i r_j dV = \frac{1}{2} \dot{Q}_{ij} R_j + [\boldsymbol{m} \times \boldsymbol{R}] + \frac{1}{2} U'_{ij} R_j$$

Multipole moments

Electric multipole moments:

$$d_{i} = \int_{V} \rho(\boldsymbol{r}) r_{i} dV = \frac{1}{i\omega} \left(U_{i} + \int_{V} J_{i} dV \right)$$
$$Q_{ij} = \int_{V} \rho(\boldsymbol{r}) r_{i} r_{j} dV = \frac{1}{i\omega} \left(U' + \int_{V} \left(J_{i} r_{j} + J_{j} r_{i} \right) dV \right)$$
$$O_{ijk} = \int_{V} \rho(\boldsymbol{r}) r_{i} r_{j} r_{k} dV = \frac{1}{i\omega} \left(U'' + \int_{V} \left(J_{i} r_{j} r_{k} + r_{i} J_{j} r_{k} + r_{i} r_{j} J_{k} \right) dV \right)$$

Magnetic multipole moments:

Surface integrals:

$$\boldsymbol{m} = \frac{1}{2} \int_{V} [\boldsymbol{r} \times \boldsymbol{J}] \, dV$$
$$M_{qm} = \frac{2}{3} \int_{V} [\boldsymbol{r} \times \boldsymbol{J}]_{q} \, r_{m} \, dV$$

$$U_{i} = \oint_{S} (\boldsymbol{n}_{S} \cdot \boldsymbol{J}) r_{i} dS$$
$$U_{ij}' = \oint_{S} (\boldsymbol{n}_{S} \cdot \boldsymbol{J}) r_{i}r_{j}dS$$
$$U_{ijk}'' = \oint_{S} (\boldsymbol{n}_{S} \cdot \boldsymbol{J}) r_{i}r_{j}r_{k} dS$$

Multipole decomposition of vector potential:

$$\boldsymbol{A}(\boldsymbol{R},t) = \frac{\mu\mu_0}{4\pi R} \left[\dot{\boldsymbol{d}} + \boldsymbol{U} + \frac{1}{2v} \ddot{Q}\boldsymbol{n} + \frac{1}{v} \left[\boldsymbol{\dot{m}} \times \boldsymbol{n} \right] + \frac{1}{2v} \dot{U}' \boldsymbol{n} + \frac{1}{6v^2} \ddot{O}\boldsymbol{n}\boldsymbol{n} + \frac{1}{2v^2} \left[\boldsymbol{n} \times \ddot{M}\boldsymbol{n} \right] + \frac{1}{6v^2} \ddot{U}'' \boldsymbol{n}\boldsymbol{n} + \dots \right]$$

Multipole decomposition of magnetic and electric fields:

$$\begin{split} \boldsymbol{H} &= \frac{\mu\mu_0}{4\pi R v} \frac{e^{ikR}}{R} \left(\begin{bmatrix} \ddot{\boldsymbol{a}} \times \boldsymbol{n} \end{bmatrix} + \begin{bmatrix} \dot{\boldsymbol{U}} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{2v} \begin{bmatrix} \ddot{\boldsymbol{Q}} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{v} \begin{bmatrix} \boldsymbol{n} \times [\boldsymbol{n} \times \ddot{\boldsymbol{m}}] \end{bmatrix} + \\ &+ \frac{1}{2v} \begin{bmatrix} \ddot{\boldsymbol{U}}' \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{6v^2} \begin{bmatrix} \ddot{\boldsymbol{O}} \boldsymbol{n} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} + \frac{1}{2v^2} \begin{bmatrix} \boldsymbol{n} \times \begin{bmatrix} \ddot{\boldsymbol{M}} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} \end{bmatrix} + \frac{1}{6v^2} \begin{bmatrix} \ddot{\boldsymbol{U}}'' \boldsymbol{n} \boldsymbol{n} \times \boldsymbol{n} \end{bmatrix} \end{split}$$

$$\begin{aligned} \boldsymbol{E} &= \frac{k^2}{4\pi\varepsilon\varepsilon_0} \frac{e^{ikR}}{R} \left([\boldsymbol{n} \times [\boldsymbol{d} \times \boldsymbol{n}]] + \frac{i}{kv} [\boldsymbol{n} \times [\boldsymbol{U} \times \boldsymbol{n}]] + \frac{ik}{2} [\boldsymbol{n} \times [Q\boldsymbol{n} \times \boldsymbol{n}]] + \frac{1}{v} [\boldsymbol{m} \times \boldsymbol{n}] + \frac{1}{2v} [\boldsymbol{n} \times [U'\boldsymbol{n} \times \boldsymbol{n}]] + \frac{k^2}{6} [\boldsymbol{n} \times [\boldsymbol{n} \times O\boldsymbol{n}\boldsymbol{n}]] + \frac{ik}{2v} [\boldsymbol{n} \times M\boldsymbol{n}] + \frac{ik}{6v} [\boldsymbol{n} \times [\boldsymbol{n} \times U''\boldsymbol{n}\boldsymbol{n}] \right) \end{aligned}$$

The open system with meta-molecule: optical waveguide with inclusion index of n=1

Silicon on insulator waveguide with inclusion of cylindrical shape and index of n=1. In this case the integrated surface cannot be placed at infinity, where electric and magnetic fields are zero.

Multipole decomposition of considered inclusion

Multipoles of organic molecule: N-Methylaniline

Ground state: d = 2,0512 1 exited state: d = 1,7813 2 exited state: d = 1,7812 3 exited state: d = 2,0106 4 exited state: d = 0,2864

- 5 exited state: d = 0,6706
- 6 exited state: d = 0,286
- 7 exited state: d = 1,5433
- 8 exited state: d = 0,9966
- 9 exited state: d = 0,671

Conclusion

- Amendments were proposed to the classical multipole decomposition to allow for analysis of open systems in which charges and currents are not localised.
- In case of an **inclusion filled with** air on an optical waveguide, electric multipole moments are replaced by the surface integrals.
- Molecular multipoles can be analysed by the classical multipole decomposition. Only electric molecular multipoles can exist in most of the conventional molecules to the best of our knowledge.

Thank you for your attention!

Our team in Ben-Gurion University