
Passive and Active Materials for Advanced Photonic Integrated Circuitry
in Visible and Near-Infrared
Aviad Katiyi and Alina Karabchevsky, School of Electrical and Computer Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

r 2022 Elsevier Inc. All rights reserved.

Abstract

Passive and active materials platforms are building blocks of an essential element of photonic integrated circuitry (PIC)-waveguide.
Due to their small dimensions, waveguides allow miniaturization and design of efficient optical components on a chip. Therefore,
choosing the right material for the waveguide is crucial for photonic integrated circuits. This article overviews passive and active
materials for waveguides fabrication and their applications.

Introduction

Materials of photonic integrated circuitry (PIC) dictate the functionality of the circuit (Karabchevsky et al., 2020c). In addition,
materials dictate the waveguide wavelengths of operation and its application in terms of passive or active functionality.

Passive materials are materials that transmit the light without absorption or generation or modulation of light. The first passive
material offered for guiding light was glass. It is dated back to 1880 when William Wheeler transmitted light through a glass “light
pipe”. In 1966 the circular fiber with a refractive index higher as compared to its surrounding was first offered as a guiding medium
for light transmission (Kao and Hockham, 1966). In 1976 silicon was used for the first time for optical waveguiding.

The development of optics communication gave rise to the development of active materials to modulate and amplify the guided
light. The first investigated material was lithium niobate (LiNbO3) which is a manmade ferroelectric crystalline material with large
electro-optic effect. As the field of integrated photonics evolved, the need for active materials that can generate light has grown
accordingly. Semiconductors can be used to generate light. In oppose to lithium niobate, semiconductors have direct bandgap that
can be used for light emission. In addition, active materials can be utilized for fabrication of detectors on a chip. Each material
group will be elaborated in the next paragraphs.
Passive PIC Materials

Passive materials for PIC are materials that are transparent to light. They do not absorb or emit photons. In Table 1, common
materials used for passive waveguiding are summarized such as borosilicate glass, silicon, silicon nitride, photonic crystal and
polymer. Borosilicate glass has transparency window from ultraviolet (UV) to near-infrared (NIR) with low propagation losses.
Silicon transparency window is in NIR and mid-infrared with highest refractive index in optical frequencies. In contrary, photonic
crystals operate in short wavelengths range. Below, each material is elaborated.
Glass

Table 2 shows fabrication methods of different types of glass based on either thin film deposition or local modification of the
refractive index.

The advantages of using glass is the affordability, a wide range of refractive indices, good transparency, doping possibility and a
high threshold to optical damage.

There are two approached to fabricate glass waveguides: local modification and thin film deposition. The local modification is
based on locally changing the refractive index of bulk glass. It can be made of various processes such as ion implantation, ion
exchange, and UV/femtosecond laser writing. Ion exchange (Karabchevsky and Kavokin, 2016) is an old process that can be dated
back to the 5th century when Egyptians used it for coloring glass dices and pots. The ions in the glass (for example Naþ ) are
replaced with ions from an external source (for example Agþ and Kþ ) usually a salt (Miliou et al., 1989). It is a diffusive process
Table 1 Passive materials

Material Refractive index (1.55 mm) Optical window Propagation losses References

Borosilicate glass B1.5 0.3–2.5 mm B0.06 dB/cm (FS written) (Chen et al., 2018)
Silicon B3.48 1.2–7 mm B0.3 dB/cm (Cardenas et al., 2009)
Silicon nitride 1.6–2 0.4–2.4 mm B0.3 dB/cm (Nguyen et al., 1984; Henry et al., 1987)
Photonic crystal B3.48 Dl ¼ 40–50 nm B0.1 dB/cm (Notomi et al., 2004)
Polymer 1.3–1.7 0.4–1.6 mm B0.1 dB/cm (Eldada and Shacklette, 2000)
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Table 2 Fabrication methods of glass waveguides

Note: Righini, G.C., Chiappini, A., 2014. Glass optical waveguides: A review of fabrication techniques. Optical Engineering 53 (7), 071819. Hunsperger, R.G.,
1995. Integrated Optics, vol. 4. Springer.
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that creates graded index change when the higher index is on the glass-salt surface and the index gradually decreases from the
surface into the substrate. Each glass and ions have different properties that influence the fabrication and the properties of the
waveguide (Findakly, 1985). In 1972, the first waveguide based on ions exchange was made by Tlþ -Naþ exchange by using
borosilicate glass and a mixture of molten nitrate salts (Izawa and Nakagome, 1972). Another method for local index change
based ions is ion implantation. In ion implantation, ionized atoms are accelerated using high voltage (up to several MeV) and hit
the substrate. The atoms penetrate the substrate, creating a change in the refractive index (as a function of the penetration depth of
ions). The advantage of this method, as compared to ions exchange is that any material can be used as a substrate with
different ions.

One of the most efficient methods for the fabrication of waveguides (Salter et al., 2012; Huang et al., 2015) is femtosecond
writing which was first demonstrated in 1996 (Davis et al., 1996). The substrate is heated by the laser, creating a local change in the
refractive index. This method doesn't need a mask for fabrication and can be one-step process. It allows for fabrication of complex
3D structures inside the substrate (Chen and de Aldana, 2014; Grenier et al., 2013).

The other method for the fabrication of glass waveguides is thin film deposition. Instead of modification of the refractive index
locally, a layer of glass is deposited on the substrate. A resist is placed on the substrate to create a metal mask. The glass is thermally
evaporated on the substrate, creating the waveguide.
Silicon

Silicon is an important material for variety of platforms with applications in photonics, particularly for telecommunications,
sensing (Karabchevsky et al., 2020c) and for microelectronic devices. Silicon (Si) has a Diamond crystal structure on a face-centered
cubic (fcc) lattice as shown in Fig. 1(a). It is cheaper compared to exotic materials such as gallium arsenide (GaAs) and lithium
niobate (LiNbO3). In addition, silicon has an energy gap of around 1.1 eV (Chelikowsky and Cohen, 1974) which makes it
transparent in the near-IR and preferable for optical telecommunications and overtone spectroscopy (Katiyi and Karabchevsky,
2018, 2020). First silicon waveguide was fabricated back in 1985 (Soref and Lorenzo, 1985). A slab and channel waveguides were
fabricated from doped silicon substrate for 1.3 and 1.6 mm wavelengths. The basic platform for silicon waveguides is Silicon-On-
Insulator (SOI) wafer which is made of a silicon substrate, silica cladding of 2 mm and silicon guiding layer (200–400 nm
typically). SOI wafer can be fabrication of two Si-SiO2 wafers by Czochralski method and then wafer bonding of the two Si-SiO2

wafers. In the early 1990s, SOI wafer, which was originally for electronics, was first used for an optical waveguide (Evans et al.,
1991; Reed et al., 1992). Silicon waveguide (Fig. 1(b)) enables small bending radius for the fundamental mode (Qiu et al., 2014)
due to the high index contrast (nSiB3.45). This allows fabrication of small structures such as ring resonators (Biberman et al.,
2012; Rodriguez et al., 2015) and Mach-Zehnders (Guha et al., 2010; Dong et al., 2012). In addition, silicon is Complementary
Metal-Oxide-Semiconductor (CMOS) compatible which allows making hybrid circuit which allows combining electronics and
optics (Orcutt et al., 2012; Kita et al., 2018) as shown in Fig. 1(c). However, silicon is a centrosymmetric material and, therefore,
doesn't have a strong Pockels effect (linear electro-optic effect). As a result, it is hard to perform phase and amplitude modulation.
Modulation of light with silicon is possible with for instance the plasma dispersion effect. In 1987, It was shown that by injecting
free carriers in silicon and applying voltage one can modulate light in silicon waveguide (Soref and Bennett, 1987). The voltage
changes the properties of the doped silicon which in turn changes the effective index of the silicon. However, the modulation in



Fig. 1 (a) Crystal structure of Silicon. (b) Scanning electron microscope (SEM) images of a single-mode silicon ridge waveguide. (c) Illustrated
micrograph of electronic-photonic integration. Reproduced from (a) Kasap, S., Capper, P., 2017. Springer Handbook of Electronic and Photonic
Materials, Springer. (b) Orcutt, J.S., Moss, B., Sun, C., et al., 2012. Open foundry platform for high-performance electronic-photonic integration.
Optics Express 20 (11), 12222 –12232. (c) Vlasov, Y.A., McNab, S.J., 2004. Losses in single-mode silicon-on-insulator strip waveguides and
bends. Optics Express 12 (8), 1622–1631.
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silicon tends to be slow. The main limitation of silicon is that silicon has an indirect band-gap that prevents the fabrication of light
sources from native silicon.
Silicon Nitride

Silicon nitride is transparent from 400 to 2400 nm and, therefore, is widely used for passive waveguides. Such waveguides are made
from silicon nitride core on silica substrate. In the first step of the fabrication process, a silica cladding is created on the silicon wafer
by thermally oxidizing the silicon substrate. The silicon nitride is then grown on the silica using a chemical vapor deposition (CVD)
which creates a high-quality layer. Depending on the deposition process, silicon nitride can be silicon-rich (higher refractive index) or
nitrogen-rich (lower refractive index). The change in the concentration enables the fabrication of silicon nitride with a range of
refractive indices, varying from 1.6 to 1.95 at a wavelength of 632.8 nm (Nguyen et al., 1984). The first fabricated silicon nitride
waveguide was a single-mode channel waveguide with propagation losses of 1–2 dB/cm (Boyd et al., 1985). Few years after in 1987,
the propagation losses in the communication range was decreased to 0.3 dB/cm (Henry et al., 1987).

Silicon nitride and silicon have their advantages and drawbacks and can be utilized for different applications. The main
advantage of silicon nitride is transparency in a wider range from visible to NIR (400–2400 nm). As result, silicon nitride
waveguide can be used for Raman spectroscopy on a chip (Zhao et al., 2018) which can not achieve in silicon due to its absorption
in the visible. On the other hand, silicon has high index contrast which makes it good for very compact devices. However, the high
index contrast (D ¼ 2) makes the waveguide sensitive to scattering losses even for a nanometer-scale roughness of the waveguide
sidewalls and can exhibit scattering losses of 3–30 dB/cm (Vlasov and McNab, 2004; Lee et al., 2001). The lower index contrast of
silicon nitride waveguide decreases the scattering losses but increases the size of the device. Another advantage is that silicon
nitride waveguides are fabricated via Low-Pressure Chemical Vapor Deposition (LPCVD) or Plasma-Enhanced Chemical Vapor
Deposition (PECVD). These methods allow flexibility in the fabrication process.
Photonic Crystal

It is also important to control light on a nanometer scale. Photonic crystal can guide light in a small-dimensional waveguide via
the photonic bandgap (PBG) effect which is graphically presented in Fig. 2(a). The photonic bandgap in photonic crystal creates a
range of wavelengths that cannot propagate inside the photonic crystal. The photonic crystal is placed in the edges of the guiding
layer as shown in Fig. 2(b). Photonic crystal occurs when the refractive index changes periodically with a period in order of the l.
The change can occur in one, two or three axes. In 1888, Rayleigh was the first to observe this phenomenon by seeing internal
colored reflexion in crystals of chlorate of potash (potassium chlorate – KclO3) (Rayleigh, 1888). He discovered that the color was
not due to absorption as the transmission was strictly complementary to the reflection. In 1987, a photonic crystal was first offered
for optics applications (Yablonovitch, 1987). Periodic structures were offered for inhibited spontaneous emission to the necessary
modes in semiconductor lasers. A few years later, the first experimental photonic crystal was fabricated for microwave region
(Yablonovitch et al., 1991). A face-centered-cubic (fcc) structure was made by drilling holes into a dielectric material to create a 3D
photonic crystal for high-Q electromagnetic cavities.

One of the conventional configurations for waveguides is a 2D photonic crystal made of silicon. Two-dimensional photonic
crystal can be fabricated by drilling holes in a material using e-beam lithography or by placing rods in air. Waveguide based on
photonic crystal has few advantages compared to the conventional waveguide. Guiding light using photonic band-gap has lower
bend-losses compared to total internal reflection. It allows for a smaller bend with low loss (Liu and Fan, 2013; Zhao et al., 2015)



Fig. 2 (a) Dispersion diagram of the photonic crystal waveguide. (b) Photonic crystal waveguide. (c) Scanning electron micrograph of photonic
crystal splitter. Reproduced from (a) Dutta, H.S., Goyal, A.K., Srivastava, V., Pal, S., 2016. Coupling light in photonic crystal waveguides: A review.
Photonics and Nanostructures-Fundamentals and Applications 20, 41–58. (b) Frandsen, L.H., Borel, P.I., Y., Zhuang, et al., 2004. Ultralow-loss
3-db photonic crystal waveguide splitter. Optics Letters 29 (14), 1623–1625. (c) Lalanne, P., Coudert, S., Duchateau, G., Dilhaire, S., Vynck, K.,
2018. Structural slow waves: Parallels between photonic crystals and plasmonic waveguides. ACS Photonics 6 (1), 4–17.
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that can be utilized for compact y-splitter (Frandsen et al., 2004). An interesting phenomenon in a photonic crystal is a slow light
phenomenon that reduces the group velocity of the light by optical resonances of the guiding material. It allows stronger
light-matter interaction, (Mahmoodian et al., 2017) a stronger non-linear process for unit length (Ek et al., 2014) and can also be
used for a sharper waveguide bend (Zhao et al., 2015).
Polymers

Polymers are easy to fabricate. The fabrication process of polymer waveguides is much more simple compared to other materials
which make polymer waveguides so affordable. Furthermore, the refractive index of polymers is easy to tune. It can vary from 1.3
to 1.7. Polymers can have different properties; one can be glossy while the other can be flexible (Kim et al., 2010). The optical
losses are generally in order of tenths of dB/cm at the telecommunications windows wavelength (Eldada and Shacklette, 2000).
For these reasons, polymer waveguides are ideal replacement to glass waveguide for cheap, robust and mass production. In the
1970s, polymer was first used for guiding light in thin-film (Harris et al., 1970). The thin films were made of polyester and
polyurethane epoxy resins and the light was coupled by a prism. Polymers can also be used for active waveguides due to the
possibility of having large thermo-optic (TO) (Zhang et al., 2006) and electro-optic (EO) (Wu et al., 2012) coefficients.

The common methods for producing polymer films are spin coating and extrusion. Each method has advantages and dis-
advantages. Spin-coating, for instance, has good control of the thickness and uniformity; on the other hand, film striation is
difficult. For patterning the polymer films, few methods can be used such as photoresist based pattering and direct lithographic
patterning. The major advantage of polymers waveguide is that the fabrication process can be made by imprinting technique which
can overcome the diffraction limitation of photolithography. This technique was initiated in the 1990s (Chou et al., 1996) and can
be an alternative to UV optical lithography, ranging from the nanometer to millimeter scale. This method is based on creating a
mold and reverse replica of the mold on a polymer layer. It can be formed by pressing hot polymer (thermal imprinting
technique) or by UV curing of liquid polymer (UV imprinting technique). Imprinting technique can be used for passive device,
such as microring resonator, (Girault et al., 2015; Wei and Krishnaswamy, 2017) waveguide grating (Yang et al., 2015; Prokop
et al., 2016) and microlens (Ahmed et al., 2017; Jung and Jeong, 2015).
Active PIC Materials

The ability to perform modulation is very important in integrated photonics. The demand for active material waveguides is back in
1960s when the evolution of optical fiber required the modulation and amplification of the signal. As compared to above mention
materials, materials discussed in this section have non-linear electooptic effect with second-order Kerr nonlinearity (χ2) or linear
(Pockels) electro-optic effect due to their molecular structure and can be used to modulate or amplify the light. Table 3 shows the
properties of common material for active waveguides.
Lithium Niobate

The first investigated and the most popular material for active waveguides in integrated photonics is lithium niobate (LiNbO3).
Lithium niobate is a manmade ferroelectric crystalline material with transparency in a wide range (0.4–5 mm). In 1965, lithium
niobate was first grown using Czochralski technique (Ballman, 1965) while the first integrated waveguide was fabricated in 1974



Table 3 Active materials

Material Refractive index r33 pm
V

� �
d33 pm

V

� �
χ 3ð Þ cm2

W

h i
Emission

Lithium niobate B2.2 30 (Abouellell and Leonberger, 1989) 27 (Chang et al., 2017) 5.3� 10–15 (Chang et al., 2018) none
Gallium arsenide B3.6 1.43 (Wu and Zhang, 1996) 119 (Chang et al., 2018) 1.6� 10–13 (Chang et al., 2018) 0.6–1.7 mm
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by metal-diffusion process, forming low-loss TE and TM mode optical waveguides (Schmidt and Kaminow, 1974). In contrast to
silicon and silicon nitride, lithium niobate have strong electro-optic coefficient (r33 ¼ 30pm=V (Abouellell and Leonberger, 1989))
and high second-order nonlinear coefficient (d33 ¼ 27pm=V (Chang et al., 2017)). Therefore, it can be utilized for active
waveguides. The strong electro-optic coefficient allows utilizing lithium niobate in optical modulators (Wang et al., 2018a,b).
Furthermore, its response time is much shorter compared to silicon modulators (femtoseconds vs. nanoseconds). Due to the large
second- and third-order nonlinearity, lithium niobate waveguides are also very attractive for non-linear applications. It can be used
for second- and third-order nonlinear processes such as second harmonic generation (SHG), (Wang et al., 2017) supercontinuum
generation (SCG) (Yu et al., 2019) and sum-frequency generation (SFG) (Ye et al., 2020). It also exhibits strong piezoelectric effect
and photoelectric properties (Weis and Gaylord, 1985) which can be utilized for acousto-optic modulation (Cai et al., 2019).

The simple platform for integrated photonics is lithium niobate on insulator (LNOI). LNOI wafers are fabricated by ion slicing
process which is commonly used for SOI wafers. Integration of lithium niobate into silicon allows fabrication of active com-
ponents on SOI wafer. This can be done by ion splicing of lithium niobate to a silicon wafer (Rabiei and Gunter, 2004) and can be
used for resonators and modulators. However, it is less efficient due to the index difference between silicon (B3.48) to lithium
niobate (B2.14) which decreases the confinement in the LN and the absorption of silicon in lo1:1mm. A much efficient method
is integration of lithium niobate with silicon nitride (Chang et al., 2017). Silicon nitride has lower material loss, broad trans-
parency and doesn't suffer from two photons absorption.
III-V Ternary and Quaternary Alloys

A material that can be used for creating a light source on a chip is a semiconductor. Semiconductors have a direct bandgap that
enables emitting or amplifying the light as illustrated in Fig. 3(a-b). In 1962, the first laser emission from GaAs junction was
observed and reported in refs. (Hall et al., 1962; Quist et al., 1962). Semiconductors have few advantages: monolithic integration
with optoelectronic and electronic devices, suitable for high-speed low-drive voltage modulators and switches and controllable
fabrication processes.

The first and mainly used semiconductors for optoelectronic devices are III-V compounds such as GaAs and InP. III-V semi-
conducting compound alloys are made from Group III (Al, Ga, In) and group V (N, P, As, Sb) atoms. The ability to tune the
bandgap, make III-V semiconductor alloys very attractive for waveguides. By changing the concentration of the atoms, the bandgap
energy (Eg) and lattice parameter (a) can be changed (Fig. 3(c)), creating different light sources and detectors (Karabchevsky, 2020)
from the same material on the same substrate. Therefore, semiconductor alloys can be used for light emitting diodes, laser diodes
and photodetectors, allowing monolithic integration of them on a chip. However, the more interesting features of semiconductors
alloys are ternary (for example gallium aluminum arsenide AlxGa1�xAs) and quaternary (for example Indium gallium arsenide
phosphide InxGa1�xAsyP1�y) alloys. The number of compounds in the alloys (three or four) change the properties of the alloy. In
ternary alloys, the bandgap energy and lattice parameter cannot be changed separately while in quaternary alloy it is possible. The
common for non-linear optics are gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) due to their high second-
order (χ 2ð Þ) and third-order (χ 3ð Þ) nonlinear optical coefficients (Chang et al., 2018). By using GaAs on SOI with Silica cladding, the
second-harmonic efficiency can increase to 13000% W�1cm�2 (Chang et al., 2018).
Dielectric and Plasmonic Overlayers

A side effect of the total internal reflection is the evanescent field. Due to the evanescent field beyond the guiding layer, an
overlayer can be placed on the guiding layer to tune the guided mode.
Metallic Overlayer

Surface plasmon polaritons (SPPs) are electromagnetic waves that propagate in the interface between metal and dielectric as
shown in Fig. 4(a). Surface plasmon was first observed by Wood in 1902 (Wood, 1902). He found a strange feature in the
reflection of metallic grating with an absorption band. In 1959, Pines described these losses, attributed them to the oscil-
lations of free electrons and called the oscillations “plasmons” (Pines, 1956). In the same year, Fano gave them the term
“polariton” (Fano, 1956). In 1959, it was first observed in non-opaque aluminum films (Turbadar, 1959). The reflectance as a
function of the angle of aluminum films evaporated on a glass substrate was investigated. For a certain range of aluminum
thicknesses, a drop in the reflectance was observed after the critical angle for p-polarization (parallel - TM mode) wave. Later,
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Fig. 4 (a) Illustration of plasmon excitation. (b) A schematic illustration of a three-dimensional metal-insulator-metal (MIM) nanoplasmonic
photon compressor (3D NPC). Reproduced from (Choo et al.). (c) Schematics of materials characterization by electric permittivity (e) and magnetic
permeability (m). (d) Illustration of the composite waveguide structure and materials for the invisibility cloaking. (e) (left) Photograph of a relatively
large multilayer graphene and (right) atomic force microscope (AFM) near its edge. (f) Illustartion of a graphene based waveguide optical
modulator and (g) electro-optical response of the device at different drive voltages (f) and (g). Reproduced from (b) Choo, H., Kim, M.-K.,
Staffaroni, M., et al., 2012. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper Nature Photonics
6 (12), 838–844. (d) Galutin, Y., Falek, E., Karabchevsky, A., 2017. Invisibility cloaking scheme by evanescent fields distortion on composite
plasmonic waveguides with si nano-spacer. Scientific Reports 7 (1), 1–8. (e) Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., 2004. Electric field
effect in atomically thin carbon films. Science 306 (5696), 666–669. (g) Liu, M., Yin, X., Ulin-Avila, E., et al., 2011. A graphene-based broadband
optical modulator. Nature 474 (7349), 64–67.

Fig. 3 Energy band structures and photon generation in (a) direct and (b) indirect band gap semiconductors and (c) band gap energy of III-V
and II-VI semiconductors (full line - direct band gap. dashed line - indirect band gap.). Reproduced from Tong, X.C., 2014. Advanced Materials for
Integrated Optical Waveguides 46 Springer.
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Otto and Kretschmann offered optical excitation for surface plasmons on a metal film (Otto, 1968; Kretschmann and Raether,
1968) using a prism as a coupling medium for the excitation of plasmons. In 1974, the term 'surface plasmon polariton'
(SPP) was introduced to the oscillations of free electrons (Cunningham et al., 1974). Later, it was shown that plasmons are
not limited to bulk metal but can be also localized in silver and gold nanoparticles (Kreibig and Zacharias, 1970). These
plasmons are called localized surface plasmon resonance (LSPR). Localized surface plasmon resonance occurs when the metal
has a sub-wavelength structure unit and the plasmons are localized. As a result, the light is concentrated in a sub-wavelength
point that is smaller than the wavelength. It gives the possibility of fabrication a nanoscale photonic circuit.

A metal thin layer can be placed on a waveguide and be used for a variety of applications. The plasmon resonance is
sensitive to the environment and the changes in the refractive index of the surrounding cause a shift in the plasmon. The shift
can be used for sensors (Ji et al., 2017; Krupin et al., 2013; Karabchevsky et al., 2015). By applying bias on the metal layer,
plasmonic waveguides can act as high speed modulators (Melikyan et al., 2014; Haffner et al., 2015). In addition, surface
plasmon polaritons can overcome the diffraction limit and propagate in nanoscale dimensions. For example, by using a
metal-insulator-metal (MIM) waveguide (Fig. 4(b)), the plasmons can be used for nanofocusing on sub-wavelength point
(Choo et al., 2012). Metal can be also implemented on waveguides by nanorods or nanoparticles, which acts as LSPR. It can
be used as nanoantenna to tune the functionality of waveguide, (Guo et al., 2017; Karabchevsky et al., 2020b) to enhance
quantum-dots light emission (Abass et al., 2014) and for enhanced sensing (Wuytens et al., 2017; Chamanzar et al., 2013;
Karabchevsky et al., 2018).
Metamaterial Overlayer

Metamaterials have a growing interest in the past decade. The word metamaterial was first used in 2001 by Lakhtakia et al.
(2001) to describe artificial material with anomalous electromagnetic properties (meta meaning is beyond). A metamaterial
is a human-made material that can have special properties that do not exist in natural materials. Important parameters that
define the material TYPE are the permittivity (e) and the permeability (m) as shown in Fig. 4(c). The main concept of
metamaterial is based on the change in the electric and magnetic dipole moments in the inclusions. The resonant changes the
permittivity and the permeability of the medium which can be described by Lorentz classical theory. Metamaterials can have
negative permittivity and permeability (Zhang et al., 2005) which does not exist in nature. By having a negative real part of
the permittivity and the permeability, it creates a negative index material (NIM) (also called double-negative (DNG)
material) which can be used for the fabrication of a perfect lens that overcomes the diffraction limit (Pendry, 2000). In
negative index material, the electric field, the magnetic field and the propagation direction follow the left-hand rule (for this
reason it is also called left-handed material - LHM). A Metamaterial can also have low values (between � 1 and 1) or
extremely high values of permittivity and/or permeability (Alù et al., 2007).

The first metamaterial, artificial chiral molecule, was fabricated by Bose in 1898 (Bose, 1898). He found that the twisted
structure of the jute creates a twist of the plane of polarization. Metamaterials can be implemented on a waveguide mainly used in
the two-dimensional configuration, called as meta-surface. It can be made from dielectric, metal and even from the waveguide
itself. It can be used for optical cloaking (Galutin et al., 2017) (Fig. 4(d)), anti-reflection structure (Karabchevsky et al., 2020a; Falek
et al., 2021) and to enhanced the spontaneous emission (Roth et al., 2017).
Graphene Overlayer

Also 2D materials like graphene has a growing interest in integrated photonics. Graphene is a single atomic layer honeycomb
of carbon (2D) that can be separated from graphite. Graphite is hexagonal pattern layers of carbon atoms hold by a weak van
der Waals force between the adjacent layers (Charlier et al., 1994). Graphite has good thermal and electric conductivity in the
layers and poor between them due to the bonding behavior. Therefore, a thin layer of graphite was considered as a good
replacement for metal to miniaturize metallic components. The leap in graphene research was in 2004 when a single layer of
graphene was first isolated from graphite (Novoselov et al., 2004). By using mechanical exfoliation, few layers of graphite and
even a single layer of graphite (graphene) were separated as shown in Fig. 4(e). This discovery opened the field of graphene
based devices.

Graphene has few unique properties. Graphene has high electron-mobility (2.5 105 cm�2 V�1 s�1 � 4 times higher than III-V
semiconductors (Xia et al., 2009)) and therefore, it can be used for high-speed modulators (Ye et al., 2016; Kovacevic et al., 2018;
Gao et al., 2015). It can be used for making modulators from passive materials by placing graphene on the guiding layer of passive
waveguide such as silicon and silicon nitride (Liu et al., 2011; Phare et al., 2015). By applying voltage, the Fermi level of graphene
is changed and tune the optical properties of the graphene layer, creates modulation (Ansell et al., 2015; Ding et al., 2017) as
shown in Fig. 4(f-g). The same configuration with the high mobility can be used for high-speed photodetectors (Guo et al., 2020)
which can even operate at zero dark current (Muench et al., 2019). The advantage of graphene based photodetector is that they are
not spectrally limited (Mueller et al., 2010) as compared to germanium (Ge) photodetectors due to the broadband optical
absorption of graphene. A graphene layer has been proposed as an alternative for plasmonics due to the much tighter confinement
(Chen et al., 2012) and the ability to be electrically tunable (Chen et al., 2012; Fei et al., 2012).
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Summary and Outlook

To conclude, optical waveguides can be used for variety of applications thanks to the development of waveguide materials and the
fabrication processes. Optical waveguides can be made from active and passive materials which allow fabrication of passive devices
for signal transmission and active devices for light generation, absorption or modulation. Different materials and waveguide's
architecture will dictate the application to be demonstrated. Further research in both passive and active materials may allow the
fabrication of novel waveguides with novel functionalities.
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